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Abstract: Few-shot object detection receives much attention with the ability to detect novel class objects using

limited  annotated  data.  The  transfer  learning-based  solution  becomes  popular  due  to  its  simple  training  with

good accuracy,  however,  it  is  still  challenging to  enrich  the feature  diversity  during the training process.  And

fine-grained  features  are  also  insufficient  for  novel  class  detection.  To  deal  with  the  problems,  this  paper

proposes  a  novel  few-shot  object  detection  method  based  on  dual-domain  feature  fusion  and  patch-level

attention.  Upon  original  base  domain,  an  elementary  domain  with  more  category-agnostic  features  is

superposed  to  construct  a  two-stream  backbone,  which  benefits  to  enrich  the  feature  diversity.  To  better

integrate various features, a dual-domain feature fusion is designed, where the feature pairs with the same size

are complementarily fused to extract more discriminative features. Moreover, a patch-wise feature refinement

termed as patch-level attention is presented to mine internal relations among the patches, which enhances the

adaptability to novel classes. In addition, a weighted classification loss is given to assist the fine-tuning of the

classifier by combining extra features from FPN of the base training model. In this way, the few-shot detection

quality  to  novel  class objects  is  improved.  Experiments  on PASCAL VOC and MS COCO datasets  verify  the

effectiveness of the method.
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1　Introduction

In  recent  years,  deep  neural  networks  (DNN)  have
made  significant  progresses  across  a  wide  range  of

visual  tasks  such  as  image  classification[1] and  object
detection[2–4], thanks to the large-scale labeled datasets.
In the real  world,  the number of object  classes is  very
huge,  and it  is  challenging to  construct  the large-scale
labeled  dataset  for  all  concerned  object  classes.
Particularly in the field of robotics, the robot inevitably
encounters  new  unknown  objects  outside  existing
public  datasets.  It  is  not  an  effective  way  to  collect
abundant  data  for  each  object  class.  Without  adequate
training  data,  the  training  effect  becomes  weak.  This
drives  researchers  to  concern  the  few-shot  object
detection  (FSOD),  which  detects  a  novel  class  object
with a few samples. The network is firstly well trained
on  large-scale  samples  of  base  classes  and  then  it  is
further  learned  with  a  few  samples  of  novel  classes.
Nowadays, FSOD has become a research hotspot.

Mainstream FSOD methods are  usually divided into
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meta-learning-based[5] and  transfer  learning-based[6, 7]

methods.  The  former  trains  the  network  with  an
episodic  set  of  tasks  to  learn  task-level  meta-
information and adapt to novel classes. In this solution,
different  meta-learners  are  used  to  extract  meta-
information for good generalization of models on novel
class  objects,  where  the  meta-learners  are  built  by
means of weight generation[8] or feature reweighting[9,

10].  Different  from  the  meta-learning-based  methods
with  episodic  training,  the  transfer  learning-based
solution firstly utilizes abundant data of base classes to
train  the  network,  and  then  the  network  is  fine-tuned
with a few samples of novel classes. Through the two-
stage  training,  the  knowledge  and  feature
representations  of  the  base  classes  are  transferred  to
novel  classes.  The  two-stage  fine-tuning  approach
(TFA)[11] is  a  milestone  method,  which  improves
detection performance by simply freezing the backbone
of  network  trained  with  base  classes  and  fine-tuning
the detector head to adapt to the novel objects. On the
basis of TFA, a series of schemes, such as multi-scale
refinement[12],  contrastive  learning[13],  task
separation[14],  and  gradient  optimization[15],  are
presented  to  enhance  the  detection  performance  with
better feature discrimination.

Notice  that  the  backbone  is  usually  initialized
through a pre-trained ResNet-101 on ImageNet[16] with
a large amount of object classes, which implies diverse
features.  However,  the  features  tend  to  base-biased
after base training, which reduces the feature diversity
and  thus  affects  the  generalization  on  novel  classes.
How to retain the feature diversity is a key to improve
the  performance.  Another  noteworthy  aspect  is  the
valuable  fine-grained  features  through  feature
refinement.  Herein,  attention  mechanisms  are
preferable  and  it  enables  the  network  to  focus  on
regions of interest.  The attentions mainly include non-
local  and  channel  attentions,  which  respectively
concern  pixel-level  or  channel-level  relation.  It  is
worth  noting  that  humans  perceive  objects  in  a  more
compositional  manner,  considering  them  as  a
combination  of  meaningful  parts  or  components.  The
part-based  perspective  enhances  the  robustness  and
reliability  to  recognize  objects.  Constructing  the  part-
level  attention  provides  a  promising  direction  to
improve  the  semantic  feature  and  thus  promote  the
performance of FSOD.

The  aforementioned  analyses  motivate  us  to  build

advanced few-shot object detection network. The main
contributions are summarized as follows:

(1)  A  novel  few-shot  object  detection  method  via
dual-domain  feature  fusion  and  patch-level  attention
(DFFPA)  is  proposed.  A  base  domain  stream  and  an
elementary  domain  stream  are  organized  in  a  parallel
way  to  enrich  the  feature  diversity.  The  dual-domain
features complement each other and feature pairs with
the  same  size  are  respectively  fused  to  extract
discriminative  features.  Further,  the  feature  map  after
region of interest  (ROI) pooling is  refined in a unit  of
patch and the relations among patches are mined. As a
result, the adaptability to novel classes is enhanced.

(2)  An  elementary  domain  is  superposed  on  the
original  base  domain  and  more  category-agnostic
features  are  preserved  for  diversity  of  features.  To
better integrate various features, a dual-domain feature
fusion (DFF) scheme is designed. By applying channel
attention  on  the  feature  map  of  each  domain,  channel
feature confidence scores are generated, which enables
to  perform  adaptive  weighting  of  channel-wise
features.  Combined  with  alternative  mask  between
weighted  features  from  distinct  domains,  valuable
features  are  exploited,  which  are  further  fused  by
convolution-based  channel  adjustment.  This
strengthens  the  feature  representation  for  recognition
under complex scenarios.

(3)  To  make  the  network  pay  more  attention  to  the
crucial object parts in the feature map of ROI pooling,
a  patch-level  attention  (PA)  mechanism  is  proposed.
PA  segments  the  feature  map  into  multiple  patches,
which  are  further  concatenated  along  channel
dimension.  On  this  basis,  the  channel  attention  is
introduced to mine the internal relations among patches
and  the  importance  of  patch  is  then  adjusted  through
feature  reweighting.  The  resultant  refined  features  are
fed into the detector head for effective prediction.

(4)  A  weighted  classification  loss  is  designed  to
assist  the  training  of  the  classifier  by  leveraging  extra
features from FPN of the base training model into ROI
pooling  to  synchronously  predict  the  classification
during  the  fine-tuning  process.  Experiments  on
PASCAL  visual  object  classes  (PASCAL  VOC)  and
Microsoft  common  objects  in  context  (MS  COCO)
verify the effectiveness of the proposed method.

The remainder of this paper is organized as follows.
Section  2 presents  the  related  work.  Section  3 details
the  proposed  method.  The  experiments  are  given  in
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Section 4 and Section 5 concludes the paper.

2　Related Work

In  this  section,  we  address  the  related  work  from two
aspects:  few-shot  object  detection  and  attention
mechanism.

2.1　Few-shot object detection

Few-shot  learning  refers  to  generalize  model  from
limited  training  data[17],  which  has  attracted
considerable attention in computer vision. As a typical
task  of  few-shot  learning,  FSOD  is  dedicated  to
training  a  model  to  achieve  simultaneous  object
classification  and  localization  with  few  labelled
samples  of  novel  classes.  To  satisfy  the  limitation  of
novel  class  training  samples,  a  simple  strategy  is  to
generate  extra  synthetic  samples  through  data
augmentation  including  geometric  and  pixel-level
transformations, which directly provides more samples
to  alleviate  overfitting.  Xu  et  al.[18] proposed  a  few-
shot  object  detection  via  sample  processing  (FSSP),
which  imposes  background  sparsity,  multi-scale
replication,  and  random  clipping  to  enrich  the  scale
distribution  of  few  training  samples.  With  these
operations,  each  input  image  is  augmented  into
multiple  images  with  different  scales  for  better  object
detection. However, such augmentation mainly focuses
on  internal  variations  of  existing  samples  and  it  is
impossible to cover all scenarios. In recent years, meta-
learning-based  and  transfer  learning-based  solutions
become the  mainstream of  FSOD.  Meta-learning,  also
known  as  learning  to  learn,  aims  to  enable  models  to
acquire  the  ability  to  learn.  A  meta-learner  is
constructed  to  acquire  meta-knowledge  from  an
episodic  set  of  tasks,  which  promotes  the  adaptability
to  new  tasks.  On  the  basis  of  one-stage  detector  you
only look once version 2 (YOLOv2)[19], Kang et al.[10]

integrated  a  meta  feature  learner  and  a  reweighting
module  to  generalize  detection  from  base  classes  to
novel  ones.  The reweighting module  transforms a  few
support  examples  from  the  novel  classes  to
corresponding  global  vectors,  which  are  then  used  to
reweight  the  meta  features  through  channel-wise
multiplication,  enhancing  the  accuracy  of  detection.
Wang  et  al.[8] introduced  a  meta-learning  detection
method  MetaDet  based  on  Faster  region-based
convolutional  networks  (R-CNN)[20].  It  leverages  the
meta-level  knowledge  from  base  dataset  to  train  a
weight  prediction  meta-model,  which  achieves  the

meta-knowledge  transfer  from  few-shot  to  category-
specific  parameters.  Meta  R-CNN[9] is  presented  for
FSOD,  where  the  R-CNN predictor  head  of  Faster  R-
CNN  is  replaced  using  a  predictor-head  remodeling
network (PRN). The PRN infers class-attentive vectors,
which are utilized for channel-wise feature selection on
ROI features, facilitating the detection or segmentation
of novel class objects.

Different from the aforementioned solutions, transfer
learning-based  methods  achieves  FSOD  of  novel
classes  by  transferring  knowledge  from  base  classes
with  abundant  training  data.  In  Ref.  [21],  Lu  et  al.
analyzed  the  disagreement  between  classification  and
location,  where  the  former  emphasizes  translational
invariance  and  the  latter  concerns  translational
variance.  Upon  this  insight,  a  decoupled  metric
network termed as DMNet is proposed based on single
shot  detector  (SSD)[22].  By  designing  a  two-branch
representation  transformation,  the  features  are
decoupled for  classification and location,  respectively.
More  works  are  rooted  in  two-stage  Faster  R-CNN
framework.  The  two-stage  fine-tuning  approach
(TFA)[11] is designed from a finding that fine-tuning on
the  part  of  detector  is  crucial  for  the  performance,
which facilitates  the  development  of  transfer  learning-
based  methods.  Sun  et  al.  proposed  a  few-shot
detection  method  based  on  contrastive  proposal
encoding  (FSCE)[13],  where  contrastive  learning  is
applied  to  promote  instance  level  intra-class
compactness and inter-class variance for better  feature
embedding.  To  handle  the  problem of  scale  variations
in  FSOD  caused  by  the  unique  sample  distribution,  a
multi-scale  positive  sample  refinement  (MPSR)[12]

method  is  proposed.  Considering  the  different  feature
preferences  of  classification  and  localization,  Liu
et  al.[14] proposed  an  adaptive  fully-dual  network
(AFD-Net).  It  uses  dual  query  encoder  and  dual
attention  generator  upon  Faster  R-CNN  to  separately
extract  features  of  classification  and  localization,  and
then  dual  aggregator  is  introduced  for  separate  model
reweighting.  Besides,  Guirguis  et  al.  focused  on  the
training  optimization  and  proposed  a  constraint-based
fine-tuning approach (CFA)[15]. On the gradient search,
more constraints are imposed to address forgetting and
enable  better  knowledge  transfer  from  base  to  novel
classes.  It  is  worth  mentioning  that  the  transfer
learning-based  methods  possibly  suffer  from
insufficient  feature  diversity  for  generalization.  In  this
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paper, an elementary domain stream is added upon the
base domain stream to provide more category-agnostic
features for enhancing generalization.

2.2　Attention mechanism

The  attention  mechanism  has  demonstrated  its
outstanding  performance  in  the  fields  of  natural
language processing[23, 24],  object segmentation[25],  and
visual  detection[9, 26–28].  It  can  adaptively  assign
weights  to  different  parts  of  the  input  data,  thereby
enhancing the  model’s  accuracy and generalization.  A
bidirectional  long  short-term  memory[24] is  proposed
for  event  temporal  relation  extraction  of  natural
language processing, where top-k attention mechanism
is  applied  to  select  the  important  neighbor  nodes  and
filter  irrelevant  noise.  Geng  et  al.[28] combined  skip
connections with a  channel  attention to  refine features
in  the  task  of  grasp  detection,  which  adaptively
recalibrates  the  concatenated  feature  from  multi-scale
encoder  outputs.  Attention  is  also  utilized  in  FSOD.
The  reweighting  vectors  in  Ref.  [10]  are  actually  a
form  of  channel  attention.  An  extension  of  non-local
self-attention  mechanism  is  introduced  in  dense
relation  distillation  with  context-aware  aggregation
(DCNet)[26],  where  support  features  and  query  feature
are  densely  matched.  Then  the  pixel-level  relevant
information  of  co-existing  objects  between  query  and
support samples is distilled to provide a robust feature.
Different  from  the  channel-level  and  pixel-level
attentions,  we  focus  on  patch-level  attention  for
patches  of  interest  by  mining  the  patch-level
correlation of features.

3　Methodology

Figure  1 illustrates  the  proposed  few-shot  object
detection network via DFF and PA, which is termed as
DFFPA.  It  integrates  a  two-stream  backbone,  four
dual-domain feature fusion modules,  and a patch-level
attention  module  into  the  framework  of  Faster  RCNN
with FPN[29].  Given an input image, feature extraction
is first performed by the two-stream backbone, where a
pre-trained  elementary  domain  stream  is  additionally
added  parallel  to  original  base  domain  stream.  The
multi-level feature maps from two streams are merged
by  the  DFF  module  to  obtain  more  discriminative
feature maps. After ROI Pooling, the resultant features
are refined through the PA module in a way of patch-
level. Finally, the object detection is achieved with box
classifier and regressor.  It  is noted that the elementary

domain stream is  pre-trained on the ImageNet dataset,
and  base  domain  stream  takes  the  abovementioned
trained weights as the initial values for further training
on  the  base  classes.  Other  parts  of  the  whole  network
follow  two-stage  training  process[11, 13, 30].  After
training  on  the  base  classes  with  abundant  labelled
data,  DFF,  classifier,  and  regressor  are  further  fine-
tuned  using  a  small  balanced  training  set  with k-shot
per class comprising both base and novel classes. Also,
a  weighted  classification  loss  is  provided  during  fine-
tuning  to  enhance  the  classifier,  where  the  features
from  FPN  of  the  base  training  model  are  extra
introduced  into  ROI  pooling  to  synchronously  predict
the class.

3.1　Two-stream backbone

Fi
res, j( j = 2, 3, 4, 5)

i
i = 1, 2

FSOD methods typically use a single-stream backbone,
which  makes  the  features  from  the  backbone  usually
base-biased  and  the  generalization  to  novel  classes  is
limited. To deal with this problem, a parallel backbone
is  additionally  introduced  for  knowledge  preservation
and  information  enrichment.  The  processing  of  these
two backbones is actually a type of data fusion, which
involves  the  integration  of  data  from  different
resources.  Wang  et  al.[31] and  Zhang  et  al.[32] have
provided comprehensive  reviews on data  fusion.  They
categorize  data  fusion  into  different  levels  including
pixel level, feature level, and decision level. Compared
to  the  pixel  level  fusion,  the  feature  level  fusion
focuses on region information and it is less affected by
noises, making it more suitable to fuse the information
of two backbones. As shown in Fig. 1, our two-stream
backbone  consists  of  a  base  domain  stream  and  an
elementary  domain  stream,  both  employing  the
ResNet-101 architecture[33].  The  former  is  initialized
with  the  weights  of  the  latter,  which  not  only
accelerates  the  training  of  the  detection  network  but
also enables knowledge transfer in the thousand classes
of  ImageNet.  In  contrast,  the  elementary  domain
stream  is  directly  from  the  pre-trained  results  on
ImageNet  and  it  implies  low-level  yet  category-
agnostic  features.  By  integrating  these  two  streams  in
parallel,  a  backbone  with  rich  features  is  created.
Specifically,  in  each  stream,  ResNet-101 is  used  with
the layers of stem, res2,  res3,  res4,  and res5.  The four
feature  maps  from  the  latter  four
layers  of  the  stream  are  selected  as  the  multi-scale
features, where  denote the base domain stream
and elementary domain stream, respectively.
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To  fuse  the  aforementioned  feature  pairs  with  the
same  size  from  two  domains,  the  DFF  module  is
designed.  Due  to  the  significant  differences  between
the features from different domains, it is a challenge to
complementarily  fuse  the  features  from  two  domains
and  further  enhance  the  model’s  adaptability  to
complex  scenarios.  Without  simple  addition  of  multi-
domain features, an attention block is introduced to the
DFF module  for  adaptive  feature  fusion,  where  global
average  pooling  (GAP),  linear  layer,  Sigmoid  activate
function,  normalization,  and  binarization  constitute
attention,  as  shown  in Fig.  1.  The  corresponding
features from different domains are processed firstly by
the  attention  block  to  adaptively  remove  redundant

channels and then concatenated as the input for domain
selection  based  on  feature  gate  unit  (FGU).  The
resultant  feature  is  sent  to  the  convolution  layer  with
1×1 kernel  for  channel  adjustment  and  the  fused
feature is then generated.

F1
res, j

F2
res, j

We  consider  the  fusion  of  two  feature  maps ,
 from  two  streams.  To  achieve  channel-wise

feature selection, global average pooling is first applied
on  each  feature  map  to  obtain  their  respective  global
representations.  Followed  by  a  linear  layer  and  a
Sigmoid  activation  function,  an  initial  channel-wise
attention  is  acquired,  which  reflects  the  feature
confidence score of  each channel.  For  model  stability,
the  initial  attention  is  normalized  to  the  range  of  0-1,

 

 

F1
res, j F2

res, j

F f
res, j j = 2, 3, 4, 5

Froi ∈ RC×H×W

Fpr Fpc ∈ R
CHW
hsws ×hs×ws Fout ∈ RC×H×W C H W

hs ws

Fig. 1    Architecture  of  the  proposed  few-shot  object  detection  via  dual-domain  feature  fusion  and  patch-level  attention
(DFFPA). It incorporates a two-stream backbone, four dual-domain feature fusion (DFF) modules, and a patch-level attention
(PA)  module  into  the  framework  of  Faster  RCNN  with  FPN.  The  stem,  res2,  res3,  res4,  and  res5 are  the  layers  in  ResNet-
101[33]. The DFF module takes two feature maps  and  from the streams of base domain and elementary domain as
inputs,  and  output  the  merged  feature  map ,  where .  The  PA  module  comprises  a  partition  reshaping,  a
channel attention, and an aggregation reshaping, which achieves the mapping from the input feature map    to

,   ,  and  then  to  the  output  feature  map   . , ,  and  refer  to  the  channel  number,
height, and width of the input feature map, respectively, and ,  denote the height and width of a patch, respectively.
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ai
res, j, i = 1,2

Ai
res, j

Fi
res, j

Fi,r
res, j [F1,r

res, j,

F2,r
res, j]

F f
res, j

and  we  have .  After  a  binarization
operation,  the  channel  attention  vector  is
obtained.  Next,  the  outputted  attention  is  used  to
reweight  the  corresponding  input  feature  map 
along  the  channel  dimension  for  the  refined  feature
map .  Finally,  the  concatenated  result 

 along  the  channel  direction  is  adjusted  in  FGU
and  further  fused  through  the  convolution  layer  with
1×1  kernel  to  output  the  fused  feature .  The
purpose of feature gate unit is to control the sparsity of
features from the two streams.

The procedure of DFF is formulated as follows:

F f
res, j =

Conv
(
FGU

(
concate

( F1
res, j ·A1

res, j(a
1
res, j, p)

F2
res, j ·A2

res, j(a
2
res, j, p)

)))
=

Conv
(
concate

( φ ·F1
res, j ·A1

res, j(a
1
res, j, p)

(1−φ) ·F2
res,j ·A

2
res, j(a

2
res, j, p)

))
(1)

 

Ai
res, j(a

i
res, j, p) =

Norm
(
Sigmoid

(
Linear

(
GAP

(
Fi

res, j

) )))∣∣∣∣∣∣
p

(2)
 

φ

φ

φ

ai
res, j

where p denotes  the  binarization  threshold.  is  a
parameter  to  control  the  proportion  of  the  two
concatenated features. During the training iterations, 
is  0 and 1 when the  iteration number  is  odd and even,
respectively.  When  inferring,  is  set  to  1/2 for  the
joint  involvement  of  two-stream  features.  If  the
element  in  has  a  value  smaller  than p,  it  will  be
set  to  a  preset  value (0.1 in this  paper),  otherwise it  is
set to 1.0.

3.2　Patch-level attention

The  humans  tend  to  perceive  objects  with  parts  of
interest. This inspires us to design a part-level attention
mechanism.  Unlike  the  previous  attentions  to  capture
pixel-wise long-range dependencies[34] or channel-wise
relationship[35],  our  patch-level  attention  (see Fig.  1)
combines  channel  attention  and  feature  reshaping  to
capture  the  relationships  among  spatial  patches.
Specifically, the PA module is composed of a partition
reshaping,  a  channel  attention,  and  an  aggregation
reshaping,  where  partition  and  aggregation  constitute
feature  reshaping.  The  partition  reshaping  operation
aims  to  divide  the  feature  map  of  single  object  into
multiple  spatial  patches  and  then  these  patches  are
concatenated  along  the  channel  dimension.  This

provides  the  chance  to  mine  the  internal  relationships
among spatial patch features through channel attention.
The  channel  attention  processes  the  concatenated
feature  map  using  the  channel  adjustment  based  on
pooling and convolution to reweight the confidence of
each  spatial  patch,  which  is  beneficial  to  capture  key
parts of channels. Afterwards, aggregation reshaping is
used  to  ensure  consistency  in  size  of  PA  input  and
output.  As  a  result,  distinctive  local  regions  are
highlighted for better object detection.

Froi ∈ RC×H×W

HW
hsws

×hs×ws

Fpr ∈ R
CHW
hsws

×hs×ws

C H W
hs

ws

Fpr

Fpr

Fpc

Fpc

Fout∈ RC×H×W

The  PA  module  takes  the  result  of
ROI  Pooling  as  the  input,  which  is  segmented  into

multiple  patches  with  the  size  of  in  a
channel-wise  manner.  These  patches  are  concatenated
in channel to generate a feature map  ,
where , ,  and  refer  to  the  channel  number,
height, and width of the PA input, respectively, and ,

 denote  the  height  and  width  of  a  patch.  It  is
important  to  mention  that  the  height  and  width  of  the
patches  should  be  able  to  evenly  divide  the
corresponding  dimensions  of  the  PA  input.  This
ensures  the  smoothness  of  feature  concatenation.  On
this  basis,  global  max-pooling  (GMP)  and  global
average-pooling  (GAP)  are  respectively  imposed  on
the  feature  map ,  and two feature  maps  containing
the maximum value and average value of each channel
are  generated.  Followed  by  an  element-wise  addition,
two cascaded convolutions with kernel size of 1×1 are
employed to obtain the channel attention map, which is
combined  with  in  a  way  of  element-wise
multiplication  to  obtain  the  refined  patch-level  feature
map .  To  restore  the  size  in  coincidence  with  PA
input, the aggregation reshaping operation unfolds 
to  output  the  feature  map ,  where  the
positions of the corresponding patches between the PA
input and output remain unchanged.

3.3　Training loss function

Similar  to  the  common  transfer  learning-based  few-
shot  object  detection[11, 13, 30],  the  training  of  the
proposed  DFFPA  includes  two  stages:  base  training
and few-shot  fine-tuning.  In  the  former  stage,  DFFPA
are trained on the base classes with the following loss
function[11].

L =Lrpn+Lcls+Lloc (3)

Lrpn Lcls Llocwhere , ,  and  denote  the  losses  of  RPN,
box  classifier,  and  box  regressor,  respectively.  As  for
the fine-tuning, the few samples of novel classes in the
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F f
aux

Laux
cls

Lft

dataset  is  employed  to  further  fine-tune  DFFPA  to
adaptively  accommodate  novel  classes,  where  DFF  is
specially  adjusted  to  adapt  to  novel  classes.
Considering the parameters  change of  DFF affects  the
fused  features  and  weakens  the  detection  of  base
classes, the auxiliary feature  from FPN of the base
training  model  is  provided  for  each  proposal  box,
which  is  also  fed  into  the  subsequential  network  to
compute  corresponding  box  classification  loss .
The  fine-tuning  loss  with  weighted  classification
loss is given by

Lft =Lrpn+
(
αLaux

cls +Lcls
)
+Lloc (4)

α

Laux
cls Lcls Lft

Preprocessing(·)

scorescls bboxes

NMS(·)

where  is the hyper-parameter to adjust the proportion
of  classification  losses  and .  With ,  the
knowledge of base model could be better remained and
the  whole  detection  performance  is  improved.
Algorithm 1 details  the object  detection process of  the
proposed  DFFPA  method.  represents
data  augmentation  including  RandomFlip  and  Expand
on  input  images.  and  denote  the
classification  scores  and  the  predicted  boxes  for
candidate  objects.  refers  to  the  non-maximum
suppression.

4　Experiment

4.1　Experimental setup

In this section, the proposed DFFPA is testified on two
public datasets: PASCAL VOC[36] and MS COCO[37].

PASCAL  VOC  dataset  with  VOC  2007 and  VOC
2012 is a well-known dataset with 20 categories. VOC
2007 and  VOC  2012 are  respectively  divided  into
training  and  validation  sets.  There  are  three  different

base/novel splits, and in each split, 5 classes are chosen
as  novel  classes  while  the  remaining  classes  are
designated  as  base  classes.  Novel  split  1 contains  the
novel  classes  of  bird,  bus,  cow,  motorbike,  and  sofa,
and  other  two  splits  are  termed  as  novel  split  2
(aeroplane, bottle, cow, horse, and sofa) and novel split
3  (boat,  cat,  motorbike,  sheep,  and  sofa).  For  each
novel  class, k-shot  examples  are  involved  in  training,
where k represents  the  number  of  labeled  instances
with  values  of  1,  2,  3,  5,  and  10.  Evaluation  is
performed  on  the  VOC  2007 test  set.  The  average
precision  with  50% IoU threshold  (AP50)  of  the  novel
classes under different data split settings is reported.

MS  COCO  dataset  comprises  80 classes.  20 classes
are  regarded  as  novel  classes  and  the  others  serve  as
base  classes.  The  proposed  method  is  testified  on  MS
COCO 2014 validation dataset with k=10 and 30 shots.
AP, AP50, AP75, APS, APM, and APL are considered as
evaluation metrics. Note that APS, APM, and APL refer
to different average precision values at different scales
(Small, Medium, and Large).

Implementation  details: Referring  to  the  setting  of
the  existing  methods  including  TFA[11],  FSCE[13],  and
DMNet[21],  the  stochastic  gradient  descent[38] with  the
momentum of 0.9 and the parameter decay of 0.0001 is
adopted  to  optimize  our  network  end-to-end  with  a
mini-batch  size  of  16.  During  the  base  training  phase,
the  learning  rate  is  set  to  0.02,  while  for  the  few-shot
fine-tuning, it is adjusted to 0.015. Our experiments are
conducted  on  a  device  with  NVIDIA  TITAN  RTX
GPU and Intel(R) Xeon(R) CPU E5-2660 v4 CPU.

4.2　Ablation studies

1) Ablation of DFFPA: To testify the performance of
our  proposed  DFFPA,  its  sixth  variants  DFFPA-I,
DFFPA-II,  DFFPA-III,  DFFPA-IV,  DFFPA-V,  and
DFFPA-VI  are  considered  according  to  whether  DFF,
PA, and weighted classification loss (wcl) are involved.
DFFPA-II  uses  addition  fusion  to  replace  DFF,  where
the inputted features are fused through simple element-
wise  addition. Table  1 presents  the  ablation  results  of
different  variants  of  our  DFFPA  on  novel  split  1 of
PASCAL  VOC  in  terms  of  AP50 with  5-shot  and  10-
shot.  Compared  with  TFA,  DFFPA-I  and  DFFPA-II
respectively  adopt  the  modules  of  addition  fusion  and
DFF  to  refine  the  domain  feature,  and  the  results
indicates  the  merit  of  the  proposed  DFF.  From  the
results  of  TFA  and  DFFPA-IV,  the  solution  with  PA
module  significantly  improves  the  performance,

 

Algorithm 1　DFFPA
sInput: Input image .

det_resOutput: Detection results .
s′← Preprocessing(s)1: ;

F1
res, j,F

2
res, j← TwoStreamBackbone

(
s′
)

2: ;

F f
res, j← DFF

(
F1

res, j,F
2
res, j

)
3: ;

Froi← ROI
(
RPN

(
FPN

(∪5
j=2 F f

res, j

)))
4: ;

Fout← PA(Froi)5: ;
scorescls← Classifier (FC(Fout))6: ;
bboxes← Regressor (FC(Fout))7: ;
det_res← NMS(scorescls,bboxes)8: ;

det_res9: return 
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benefiting  from  the  capability  to  effectively  capture
key  parts  of  objects  and  highlight  distinctive  local
regions.  On  the  basis  of  DFFPA-II,  DFFPA-VI
combines PA and the performance is further improved.
Besides, one can see from the results of DFFPA-VI and
DFFPA that the introduction of wcl is beneficial to the
detection.  Overall,  the  proposed  DFFPA  performs  the
best.

2) Ablation of DFF: The DFF module aims to fuse
features,  where  the  binarization  threshold p is  a  key
factor  to  control  the  distribution  of  features  during
fusion.  The smaller  the  value  of p,  the  more  the  input
features  are  preserved.  When p is  0,  all  input  features
remain  unchanged.  We  consider  five  variants  of  DFF
with  different  binarization  threshold p and  the
comparison on novel split 1 of PASCAL VOC in terms
of AP, AP75,  and AP50 are shown in Table 2. One can
see that  the  value  of p has  a  significant  impact  on the
result,  and  a  bigger  value  shall  decrease  the  detection
quality. p is chosen to 0.2 in our method to pursue the
best performance.

3)  Ablation  of  PA: The  PA  is  used  to  capture  the
interest of patch of objects following the ROI pooling.
Notice that the input size of PA will limit the receptive
field of each patch and further affect the performance.
Thus,  to  select  the  proper  input  size,  we  conduct  the
ablation  of  PA  with  different  input  sizes,  and  the
results  are  reported  in Table  3.  It  can  be  seen that  the

input size 8 × 8 is preferable with its best performance.

Laux
cls

Lcls

α

α

α

α

α

Laux
cls Lcls

4)  Ablation  of  wcl: In  the  classification  loss,  an
additional  loss  based  on  the  auxiliary  feature  is
added  upon  the  common  loss ,  and  a  hyper-
parameter  is  used  to  weight  these  two  losses.  To
explore  the  influence  of ,  different  experiments  are
conducted, as shown in Table 4, where  is set to 0.25,
0.50, 0.75, and 1.0, respectively. With the increasing of

,  the  detection  performance  gradually  improves.
According  to  the  results,  is  selected  to  1.0,  which
means equal treating of  and .

4.3　Comparison with existing methods

We  evaluate  and  compare  the  proposed  DFFPA  with
existing  methods  including  MetaDet[8],  Meta  R-
CNN[9],  YOLO-ft-full[10],  FRCN-ft-full[9],  FSRW[10],
TFA[11],  MPSR[12],  FSCE[13],  DCNet[26],  and
DMNet[21]. Table  5 shows  the  novel  class  detection
results  under  different  shots  (k=1,  2,  3,  5,  and  10)  in
terms  of  AP50 on  three  splits  of  PASCAL  VOC.  It  is
indicated  that  the  proposed  method  performs  well.  In

 

Table 1    Comparison of different variants of our DFFPA on novel split 1 of PASCAL VOC.

Method
Module AP50(%)

Feature fusion Patch-level
Attention (PA)

Weighted classification
loss (wcl) 5-shot 10-shot

Addition fusion Dual DFF
TFA (Baseline) × × × × 55.7 56.0

DFFPA-I ✓ × × × 54.4 56.5
DFFPA-II × ✓ × × 59.1 64.1
DFFPA-III × ✓ × ✓ 60.1 65.1
DFFPA-IV × × ✓ × 60.9 63.9
DFFPA-V × × ✓ ✓ 61.9 64.3
DFFPA-VI × ✓ ✓ × 62.1 65.2

DFFPA × ✓ ✓ ✓ 62.3 66.8

 

Table 2    Ablation of DFF on novel split 1 of PASCAL VOC.

Setting AP(%) AP75(%) AP50(%)

DFF-Ⅰ (p=0.0) 38.9 41.3 65.0
DFF-Ⅱ (p=0.2) 40.4 43.1 66.8
DFF-Ⅲ (p=0.4) 37.8 39.2 63.1
DFF-Ⅳ (p=0.6) 32.5 31.6 57.6
DFF-Ⅴ (p=0.8) 30.8 30.4 53.7

 

Table 3    Ablation of PA on novel split 1 of PASCAL VOC.

Method Input size AP(%) AP75(%) AP50(%)

PA-Ⅰ 6×6 38.2 39.0 63.5
PA-Ⅱ 10×10 39.3 41.4 64.9
PA-Ⅲ 12×12 39.5 42.6 64.7
PA-Ⅳ 8×8 40.4 43.1 66.8

 

Table 4    Ablation of wcl on novel split 1 of PASCAL VOC.

Setting AP(%) AP75(%) AP50(%)

αwcl-Ⅰ ( =0.25) 38.3 39.8 65.3
αwcl-Ⅱ ( =0.50) 39.6 41.1 66.2
αwcl-Ⅲ ( =0.75) 39.7 41.0 66.5
αwcl-Ⅳ ( =1.0) 40.4 43.1 66.8
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the 1-shot setting, our results on novel split 1 and novel
split  3 performs  inferior  to  FSCE[13] and  DMNet[21],
respectively. This discrepancy possibly comes from the
limited  number  of  training  samples  available  for  the
novel class.

Figure 2 visualizes features learned by DFFPA on a
selected  image  from  PASCAL  VOC  dataset.  The
heatmaps  are  obtained  through  Grad-CAM  (Gradient-
weighted  class  activation  mapping)[39],  which  reflects
the  degree  of  attention  on  different  regions  of  the
image.  For  the  original  image  in Fig.  2a,  the  features
from  the  res5 layers  of  base  and  elementary  domains
are depicted in Figs. 2b and 2c, respectively. They are
fused  by  DFF  and  the  result  is  shown  in Fig.  2d.
Figures 2e and 2f provides the features outputted from
FPN and PA, respectively. The final detection result is
given  in Fig.  2g.  It  is  observed  that  the  features
processed  by  DFF,  FPN,  and  PA  can  focus  on  the

target  object  well,  which  provides  good  feature
discriminability.  In  addition, Fig.  3 visualizes  the
detection results generated by the proposed DFFPA on
PASCAL  VOC  dataset  with  10-shot,  where  each  row
corresponds to a novel split.

For  MS  COCO  dataset,  it  comprises  more  target
object  categories  than  PASCAL  VOC  dataset.  This
means more challenging in manifold scenarios and the
detection results  for  the  novel  classes  are  presented in
Table  6.  Overall,  our  DFFPA  demonstrate  good
performance. Figure 4 gives the detection results of the
proposed  DFFPA  with  30-shot  on  MS  COCO  dataset
and the novel objects can be well detected.

4.4　Robustness verification

To  further  verify  the  proposed  method,  different
interferences  are  imposed  on  four  images  from  novel
split 1 of PASCAL VOC and the detection results with

 

Table 5    Comparison of different methods on PASCAL VOC dataset in terms of AP50 (%).

Method
Novel split 1 Novel split 2 Novel split 3

1 2 3 5 10 1 2 3 5 10 1 2 3 5 10
YOLO-ft-full[10] 6.6 10.7 12.5 24.8 38.6 12.5 4.2 11.6 16.1 33.9 13.0 15.9 15.0 32.2 38.4
FRCN-ft-full[9] 13.8 19.6 32.8 41.5 45.6 7.9 15.3 26.2 31.6 39.1 9.8 11.3 19.1 35.0 45.1

FSRW[10] 14.8 15.5 26.7 33.9 47.2 15.7 15.3 22.7 30.1 40.5 21.3 25.6 28.4 42.8 45.9
MetaDet[8] 18.9 20.6 30.2 36.8 49.6 21.8 23.1 27.8 31.7 43.0 20.6 23.9 29.4 43.9 44.1

MetaR-CNN[9] 19.9 25.5 35.0 45.7 51.5 10.4 19.4 29.6 34.8 45.4 14.3 18.2 27.5 41.2 48.1
TFA[11] 39.8 36.1 44.7 55.7 56.0 23.5 26.9 34.1 35.1 39.1 30.8 34.8 42.8 49.5 49.8

MPSR[12] 41.7 - 51.4 55.2 61.8 24.4 - 39.2 39.9 47.8 35.6 - 42.3 48.0 49.7
FSCE[13] 44.2 43.8 51.4 61.9 63.4 27.3 29.5 43.5 44.2 50.2 37.2 41.9 47.5 54.6 58.5
DCNet[26] 33.9 37.4 43.7 51.1 59.6 23.2 24.8 30.6 36.7 46.6 32.3 34.9 39.7 42.6 50.7
DMNet[21] 39.0 48.9 50.7 58.6 62.5 31.2 32.4 40.3 47.6 52.0 41.7 41.8 42.7 50.3 52.1

Ours 44.0 52.0 54.4 62.8 66.8 31.5 36.4 46.5 49.4 53.1 39.9 44.9 48.9 56.4 57.1

 

(a) (b) (c) (d)

(e) (f) (g) 
Fig. 2    Visualization  of  features  learned  by  DFFPA  on  the  selected  image  from  PASCAL  VOC  dataset.  The  heatmap  is
generated by Grad-CAM[39]. (a) Original image. (b) Feature from the res5 layer of base domain. (c) Feature from the res5 layer
of elementary domain. (d) Fused result of (b) and (c). (e) Feature from FPN. (f) Output feature of PA. (g) Detection result.
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confidence  scores  higher  than  0.3 are  illustrated  in
Fig.  5.  The  first  row  presents  the  detection  results  of
original  images.  The  second  to  seventh  rows
correspond to the results  after  brightness enhancement
(25%),  brightness  reduction  (25%),  salt-pepper  noise
with  intensity  of  3%,  GridMask  with  size  3×3,
Gaussian blur with kernel size 5×5, and random mask.
In  spite  of  these  interferences,  the  proposed  method
still  achieves  stable  detection,  which  proves  its
robustness.

4.5　Verification on actual scene

To  further  testify  the  proposed  method,  the
experiments  on  actual  scene  are  conducted  and  the

results  are  shown  in Figs.  6a  and 6b,  where  the
concerned  object  classes  include  bottle,  cup,  teddy
bear,  dining  table,  apple,  banana,  orange,  remote,  cell
phone, sports ball, and mouse. It is seen that the objects
are correctly detected.

5　Conclusion

This  paper  proposes  a  few-shot  object  detection
method  with  dual-domain  feature  fusion  and  patch-
level  attention.  Following  the  transfer  learning-based
framework, a two-stream backbone is designed, and the
feature  diversity  is  retained  through  parallel  base  and
elementary  domains.  The  features  from  these  two

 

 
Fig. 3    Detection results of DFFPA with shot=10 on PASCAL VOC dataset. Results with confidence scores higher than 0.5 are
visualized.

 

Table 6    Comparison of different methods on MS COCO dataset in terms of AP, AP50, AP75, APS, APM, and APL (%).

Method
10-shot 30-shot

AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL

YOLO-ft-full[10] 3.1 7.9 1.7 0.7 2.0 6.3 7.7 16.7 6.4 0.4 3.3 14.4
FRCN-ft-full[9] 6.5 13.4 5.9 1.8 5.3 11.3 11.1 21.6 10.3 2.9 8.8 18.9

FSRW[10] 5.6 12.3 4.6 0.9 3.5 10.5 9.1 19.0 7.6 0.8 4.9 16.8
MetaDet[8] 7.1 14.6 6.1 1.0 4.1 12.2 11.3 21.7 8.1 1.1 6.2 17.3

Meta R-CNN[9] 8.7 19.1 6.6 2.3 7.7 14.0 12.4 25.3 10.8 2.8 11.6 19.0
TFA[11] 10.0 - 9.3 - - - 13.7 - 13.4 - - -

MPSR[12] 9.8 17.9 9.7 3.3 9.2 16.1 14.1 25.4 14.2 4.0 12.9 23.0
FSCE[13] 11.9 - 10.5 - - - 16.4 - 16.2 - - -
DCNet[26] 12.8 23.4 11.2 4.3 13.8 21.0 18.6 32.6 17.5 6.9 16.5 27.4
DMNet[21] 10.0 17.4 10.4 3.4 8.3 16.1 17.1 29.7 17.7 4.8 14.7 26.5

Ours 13.0 24.0 12.4 3.2 14.1 21.3 18.6 33.7 18.7 6.9 20.9 27.7
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domains  are  fused  in  the  dual-domain  feature  fusion
module,  and adaptive  feature  refinement  are  achieved.
Then, a patch-level attention is presented to capture the
crucial  parts  of  object  features  from  ROI  head  for
better  feature  discrimination.  In  addition,  a  weighted
classification  loss  is  given  to  assist  the  fine-tuning  of
classifier.  Experimental  results  on PASCAL VOC and
MS  COCO  datasets  demonstrate  the  effectiveness  of
the proposed method.
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