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Few-Shot Object Detection via Dual-Domain Feature
Fusion and Patch-Level Attention

Guangli Ren, Jierui Liu, Mengyao Wang, Peiyu Guan*, Zhigiang Cao, and Junzhi Yu

Abstract: Few-shot object detection receives much attention with the ability to detect novel class objects using
limited annotated data. The transfer learning-based solution becomes popular due to its simple training with
good accuracy, however, it is still challenging to enrich the feature diversity during the training process. And
fine-grained features are also insufficient for novel class detection. To deal with the problems, this paper
proposes a novel few-shot object detection method based on dual-domain feature fusion and patch-level
attention. Upon original base domain, an elementary domain with more category-agnostic features is
superposed to construct a two-stream backbone, which benefits to enrich the feature diversity. To better
integrate various features, a dual-domain feature fusion is designed, where the feature pairs with the same size
are complementarily fused to extract more discriminative features. Moreover, a patch-wise feature refinement
termed as patch-level attention is presented to mine internal relations among the patches, which enhances the
adaptability to novel classes. In addition, a weighted classification loss is given to assist the fine-tuning of the
classifier by combining extra features from FPN of the base training model. In this way, the few-shot detection

quality to novel class objects is improved. Experiments on PASCAL VOC and MS COCO datasets verify the

effectiveness of the method.
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1 Introduction

In recent years, deep neural networks (DNN) have
made significant progresses across a wide range of
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visual tasks such as image classification!'l and object
detection!Z1, thanks to the large-scale labeled datasets.
In the real world, the number of object classes is very
huge, and it is challenging to construct the large-scale
labeled dataset for all concerned object classes.
Particularly in the field of robotics, the robot inevitably
encounters new unknown objects outside existing
public datasets. It is not an effective way to collect
abundant data for each object class. Without adequate
training data, the training effect becomes weak. This
drives researchers to concern the few-shot object
detection (FSOD), which detects a novel class object
with a few samples. The network is firstly well trained
on large-scale samples of base classes and then it is
further learned with a few samples of novel classes.
Nowadays, FSOD has become a research hotspot.
Mainstream FSOD methods are usually divided into
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meta-learning-based! and transfer learning-based!®:7!
methods. The former trains the network with an
episodic set of tasks to learn task-level meta-
information and adapt to novel classes. In this solution,
different meta-learners are used to extract meta-
information for good generalization of models on novel
class objects, where the meta-learners are built by
means of weight generation!® or feature reweighting!®-
101, Different from the meta-learning-based methods
with episodic training, the transfer learning-based
solution firstly utilizes abundant data of base classes to
train the network, and then the network is fine-tuned
with a few samples of novel classes. Through the two-
stage training, the knowledge and feature
representations of the base classes are transferred to
novel classes. The two-stage fine-tuning approach
(TFA)[1 is a milestone method, which improves
detection performance by simply freezing the backbone
of network trained with base classes and fine-tuning
the detector head to adapt to the novel objects. On the
basis of TFA, a series of schemes, such as multi-scale
refinement! 12!,

contrastive learning!13], task

separation!!4], and gradient optimization!!3), are
presented to enhance the detection performance with
better feature discrimination.

Notice that the backbone is wusually initialized
through a pre-trained ResNet-101 on ImageNet!1¢] with
a large amount of object classes, which implies diverse
features. However, the features tend to base-biased
after base training, which reduces the feature diversity
and thus affects the generalization on novel classes.
How to retain the feature diversity is a key to improve
the performance. Another noteworthy aspect is the
valuable fine-grained through

Herein, mechanisms  are

features feature

refinement. attention
preferable and it enables the network to focus on
regions of interest. The attentions mainly include non-
local and channel attentions, which respectively
concern pixel-level or channel-level relation. It is
worth noting that humans perceive objects in a more
compositional considering

combination of meaningful parts or components. The

manner, them as a
part-based perspective enhances the robustness and
reliability to recognize objects. Constructing the part-
level attention provides a promising direction to
improve the semantic feature and thus promote the
performance of FSOD.

The aforementioned analyses motivate us to build

advanced few-shot object detection network. The main
contributions are summarized as follows:

(1) A novel few-shot object detection method via
dual-domain feature fusion and patch-level attention
(DFFPA) is proposed. A base domain stream and an
elementary domain stream are organized in a parallel
way to enrich the feature diversity. The dual-domain
features complement each other and feature pairs with
the same size are respectively fused to extract
discriminative features. Further, the feature map after
region of interest (ROI) pooling is refined in a unit of
patch and the relations among patches are mined. As a
result, the adaptability to novel classes is enhanced.

(2) An elementary domain is superposed on the
original base domain and more category-agnostic
features are preserved for diversity of features. To
better integrate various features, a dual-domain feature
fusion (DFF) scheme is designed. By applying channel
attention on the feature map of each domain, channel
feature confidence scores are generated, which enables
to perform adaptive weighting of channel-wise
features. Combined with alternative mask between
weighted features from distinct domains, valuable
features are exploited, which are further fused by
convolution-based ~ channel  adjustment. This
strengthens the feature representation for recognition
under complex scenarios.

(3) To make the network pay more attention to the
crucial object parts in the feature map of ROI pooling,
a patch-level attention (PA) mechanism is proposed.
PA segments the feature map into multiple patches,
which are further concatenated along channel
dimension. On this basis, the channel attention is
introduced to mine the internal relations among patches
and the importance of patch is then adjusted through
feature reweighting. The resultant refined features are
fed into the detector head for effective prediction.

(4) A weighted classification loss is designed to
assist the training of the classifier by leveraging extra
features from FPN of the base training model into ROI
pooling to synchronously predict the classification
during the fine-tuning process. Experiments on
PASCAL visual object classes (PASCAL VOC) and
Microsoft common objects in context (MS COCO)
verify the effectiveness of the proposed method.

The remainder of this paper is organized as follows.
Section 2 presents the related work. Section 3 details
the proposed method. The experiments are given in
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Section 4 and Section 5 concludes the paper.
2 Related Work

In this section, we address the related work from two
aspects: few-shot object detection and attention
mechanism.

2.1 Few-shot object detection

Few-shot learning refers to generalize model from
limited training datal'”), which has attracted
considerable attention in computer vision. As a typical
task of few-shot learning, FSOD is dedicated to
training a model to achieve simultaneous object
classification and localization with few labelled
samples of novel classes. To satisfy the limitation of
novel class training samples, a simple strategy is to
generate extra synthetic samples through data
augmentation including geometric and pixel-level
transformations, which directly provides more samples
to alleviate overfitting. Xu et al.['8] proposed a few-
shot object detection via sample processing (FSSP),
which imposes background sparsity, multi-scale
replication, and random clipping to enrich the scale
distribution of few training samples. With these
operations, each input image is augmented into
multiple images with different scales for better object
detection. However, such augmentation mainly focuses
on internal variations of existing samples and it is
impossible to cover all scenarios. In recent years, meta-
learning-based and transfer learning-based solutions
become the mainstream of FSOD. Meta-learning, also
known as learning to learn, aims to enable models to
acquire the ability to learn. A meta-learner is
constructed to acquire meta-knowledge from an
episodic set of tasks, which promotes the adaptability
to new tasks. On the basis of one-stage detector you
only look once version 2 (YOLOvV2)I191) Kang et al.[10]
integrated a meta feature learner and a reweighting
module to generalize detection from base classes to
novel ones. The reweighting module transforms a few
support examples from the novel classes to
corresponding global vectors, which are then used to
reweight the meta features through channel-wise
multiplication, enhancing the accuracy of detection.
Wang et al.l¥l introduced a meta-learning detection
method MetaDet based on Faster region-based
convolutional networks (R-CNN)[20I, Tt leverages the
meta-level knowledge from base dataset to train a
weight prediction meta-model, which achieves the

meta-knowledge transfer from few-shot to category-
specific parameters. Meta R-CNN! is presented for
FSOD, where the R-CNN predictor head of Faster R-
CNN is replaced using a predictor-head remodeling
network (PRN). The PRN infers class-attentive vectors,
which are utilized for channel-wise feature selection on
ROI features, facilitating the detection or segmentation
of novel class objects.

Different from the aforementioned solutions, transfer
learning-based methods achieves FSOD of novel
classes by transferring knowledge from base classes
with abundant training data. In Ref. [21], Lu et al.
analyzed the disagreement between classification and
location, where the former emphasizes translational
invariance and the latter concerns translational
variance. Upon this insight, a decoupled metric
network termed as DMNet is proposed based on single
shot detector (SSD)I22, By designing a two-branch
representation  transformation, the features are
decoupled for classification and location, respectively.
More works are rooted in two-stage Faster R-CNN
framework. The two-stage fine-tuning approach
(TFA)U is designed from a finding that fine-tuning on
the part of detector is crucial for the performance,
which facilitates the development of transfer learning-
based methods. Sun et al. proposed a few-shot
detection method based on contrastive proposal
encoding (FSCE)!3l, where contrastive learning is
applied to promote
compactness and inter-class variance for better feature

instance level intra-class
embedding. To handle the problem of scale variations
in FSOD caused by the unique sample distribution, a
multi-scale positive sample refinement (MPSR)[!2]
method is proposed. Considering the different feature
preferences of classification and localization, Liu
et al.l'Y proposed an adaptive fully-dual network
(AFD-Net). It uses dual query encoder and dual
attention generator upon Faster R-CNN to separately
extract features of classification and localization, and
then dual aggregator is introduced for separate model
reweighting. Besides, Guirguis et al. focused on the
training optimization and proposed a constraint-based
fine-tuning approach (CFA)I!51, On the gradient search,
more constraints are imposed to address forgetting and
enable better knowledge transfer from base to novel
classes. It is worth mentioning that the transfer
learning-based  methods possibly suffer from
insufficient feature diversity for generalization. In this
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paper, an elementary domain stream is added upon the
base domain stream to provide more category-agnostic
features for enhancing generalization.

2.2 Attention mechanism

The attention mechanism has demonstrated its
outstanding performance in the fields of natural
language processingl23-241; object segmentation!?3], and
visual detection®26-281. Tt can adaptively assign
weights to different parts of the input data, thereby
enhancing the model’s accuracy and generalization. A
bidirectional long short-term memory24l is proposed
for event temporal relation extraction of natural
language processing, where top-k attention mechanism
is applied to select the important neighbor nodes and
filter irrelevant noise. Geng et al.[28] combined skip
connections with a channel attention to refine features
in the task of grasp detection, which adaptively
recalibrates the concatenated feature from multi-scale
encoder outputs. Attention is also utilized in FSOD.
The reweighting vectors in Ref. [10] are actually a
form of channel attention. An extension of non-local
self-attention mechanism is introduced in dense
relation distillation with context-aware aggregation
(DCNet)!26], where support features and query feature
are densely matched. Then the pixel-level relevant
information of co-existing objects between query and
support samples is distilled to provide a robust feature.
Different from the channel-level and pixel-level
attentions, we focus on patch-level attention for
patches of interest by mining the patch-level
correlation of features.

3 Methodology

Figure 1 illustrates the proposed few-shot object
detection network via DFF and PA, which is termed as
DFFPA. It integrates a two-stream backbone, four
dual-domain feature fusion modules, and a patch-level
attention module into the framework of Faster RCNN
with FPN[?%1. Given an input image, feature extraction
is first performed by the two-stream backbone, where a
pre-trained elementary domain stream is additionally
added parallel to original base domain stream. The
multi-level feature maps from two streams are merged
by the DFF module to obtain more discriminative
feature maps. After ROI Pooling, the resultant features
are refined through the PA module in a way of patch-
level. Finally, the object detection is achieved with box
classifier and regressor. It is noted that the elementary

domain stream is pre-trained on the ImageNet dataset,
and base domain stream takes the abovementioned
trained weights as the initial values for further training
on the base classes. Other parts of the whole network
follow two-stage training process!!!-13.301  After
training on the base classes with abundant labelled
data, DFF, classifier, and regressor are further fine-
tuned using a small balanced training set with k-shot
per class comprising both base and novel classes. Also,
a weighted classification loss is provided during fine-
tuning to enhance the classifier, where the features
from FPN of the base training model are extra
introduced into ROI pooling to synchronously predict
the class.

3.1 Two-stream backbone

FSOD methods typically use a single-stream backbone,
which makes the features from the backbone usually
base-biased and the generalization to novel classes is
limited. To deal with this problem, a parallel backbone
is additionally introduced for knowledge preservation
and information enrichment. The processing of these
two backbones is actually a type of data fusion, which
involves the integration of data from different
resources. Wang et al.3ll and Zhang et al.32] have
provided comprehensive reviews on data fusion. They
categorize data fusion into different levels including
pixel level, feature level, and decision level. Compared
to the pixel level fusion, the feature level fusion
focuses on region information and it is less affected by
noises, making it more suitable to fuse the information
of two backbones. As shown in Fig. 1, our two-stream
backbone consists of a base domain stream and an
elementary domain stream, both employing the
ResNet-101 architecturel33l, The former is initialized
with the weights of the latter, which not only
accelerates the training of the detection network but
also enables knowledge transfer in the thousand classes
of ImageNet. In contrast, the elementary domain
stream is directly from the pre-trained results on
ImageNet and it implies low-level yet category-
agnostic features. By integrating these two streams in
parallel, a backbone with rich features is created.
Specifically, in each stream, ResNet-101 is used with
the layers of stem, res2, res3, res4, and res5. The four
feature maps F ies’j( j=2,3,4,5) from the latter four
layers of the stream i are selected as the multi-scale
features, where i = 1, 2 denote the base domain stream
and elementary domain stream, respectively.
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Fig.1 Architecture of the proposed few-shot object detection via dual-domain feature fusion and patch-level attention
(DFFPA). It incorporates a two-stream backbone, four dual-domain feature fusion (DFF) modules, and a patch-level attention
(PA) module into the framework of Faster RCNN with FPN. The stem, res2, res3, res4, and resS are the layers in ResNet-
1011331, The DFF module takes two feature maps F ies, jand F isy j from the streams of base domain and elementary domain as

inputs, and output the merged feature map F{eS’ j» Where j=2,3,4,5. The PA module comprises a partition reshaping, a

channel attenti&rvlv, and an aggregation reshaping, which achieves the mapping from the input feature map F,; € REHW to
Fpry Fpe € R *"%s and then to the output feature map F,u; € ROHW_ C, H, and W refer to the channel number,
height, and width of the input feature map, respectively, and h;, w; denote the height and width of a patch, respectively.

To fuse the aforementioned feature pairs with the
same size from two domains, the DFF module is
designed. Due to the significant differences between
the features from different domains, it is a challenge to
complementarily fuse the features from two domains
and further enhance the model’s adaptability to
complex scenarios. Without simple addition of multi-
domain features, an attention block is introduced to the
DFF module for adaptive feature fusion, where global
average pooling (GAP), linear layer, Sigmoid activate
function, normalization, and binarization constitute
attention, as shown in Fig. 1. The corresponding
features from different domains are processed firstly by
the attention block to adaptively remove redundant

channels and then concatenated as the input for domain
selection based on feature gate unit (FGU). The
resultant feature is sent to the convolution layer with
Ix1 kernel for channel adjustment and the fused
feature is then generated.

We consider the fusion of two feature maps Fr‘es’j,
Frzes’ i from two streams. To achieve channel-wise
feature selection, global average pooling is first applied
on each feature map to obtain their respective global
representations. Followed by a linear layer and a
Sigmoid activation function, an initial channel-wise
attention is acquired, which reflects the feature
confidence score of each channel. For model stability,

the initial attention is normalized to the range of 0-1,
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and we have o .,i=1,2. After a Dbinarization

res,j’

the channel attention vector Aicsj. is

obtained. Next, the outputted attention is used to

operation,

reweight the corresponding input feature map Fﬁesj

along the channel dimension for the refined feature

ir 1,r

map F, ;. Finally, the concatenated result [F

F rze: ;1 along the channel direction is adjusted in FGU
and further fused through the convolution layer with
The

purpose of feature gate unit is to control the sparsity of

1x1 kernel to output the fused feature F; {es’ I
features from the two streams.
The procedure of DFF is formulated as follows:

S

res,j
1 4l

Fl Al (@l |
Conv FGU(concate( SR rzes’/( 2 7 )) =
Fres,j Ares,j(ares,j’p)

1 gl

FLo-AL (al
ConV(Concate( s 2reb’j( 2 IZ) )) M
(I-¢)- Fres,j 'Afesvj(aresvj’p)

i i —
Ares,j(ares,j’ p) -

Norm(Sigmoid(Linear(GAP(Fﬁes’ ))))' @
p

where p denotes the binarization threshold. ¢ is a
parameter to control the proportion of the two
concatenated features. During the training iterations, ¢
is 0 and 1 when the iteration number is odd and even,
respectively. When inferring, ¢ is set to 1/2 for the
joint involvement of two-stream features. If the
element in aies’j has a value smaller than p, it will be

set to a preset value (0.1 in this paper), otherwise it is
set to 1.0.

3.2 Patch-level attention

The humans tend to perceive objects with parts of
interest. This inspires us to design a part-level attention
mechanism. Unlike the previous attentions to capture
pixel-wise long-range dependencies3#! or channel-wise
relationship!3>], our patch-level attention (see Fig. 1)
combines channel attention and feature reshaping to
capture the relationships among spatial patches.
Specifically, the PA module is composed of a partition
reshaping, a channel attention, and an aggregation
reshaping, where partition and aggregation constitute
feature reshaping. The partition reshaping operation
aims to divide the feature map of single object into
multiple spatial patches and then these patches are
the channel dimension. This

concatenated along

provides the chance to mine the internal relationships
among spatial patch features through channel attention.
The channel attention processes the concatenated
feature map using the channel adjustment based on
pooling and convolution to reweight the confidence of
each spatial patch, which is beneficial to capture key
parts of channels. Afterwards, aggregation reshaping is
used to ensure consistency in size of PA input and
output. As a result, distinctive local regions are
highlighted for better object detection.

The PA module takes the result F,o; € REXW of
ROI Pooling as the input, which is segmented into

multiple patches with the size of Wthst in a
A \)

channel-wise manner. These patches‘ are COIg%eletenated
in channel to generate a feature map F,,€ R s
where C, H, and W refer to the channel number,
height, and width of the PA input, respectively, and A,
ws denote the height and width of a patch. It is
important to mention that the height and width of the
patches should be able to evenly divide the
corresponding dimensions of the PA input. This
ensures the smoothness of feature concatenation. On
this basis, global max-pooling (GMP) and global
average-pooling (GAP) are respectively imposed on
the feature map F),, and two feature maps containing
the maximum value and average value of each channel
are generated. Followed by an element-wise addition,
two cascaded convolutions with kernel size of 1x1 are
employed to obtain the channel attention map, which is
combined with F, in a way of element-wise
multiplication to obtain the refined patch-level feature
map Fp.. To restore the size in coincidence with PA
input, the aggregation reshaping operation unfolds F .
to output the feature map Fou € ROF*W  where the
positions of the corresponding patches between the PA
input and output remain unchanged.

3.3 Training loss function

Similar to the common transfer learning-based few-
shot object detectionl!.13.301  the training of the
proposed DFFPA includes two stages: base training
and few-shot fine-tuning. In the former stage, DFFPA
are trained on the base classes with the following loss
functionf!1],

L=Lpn+Los+ Lioc 3

where Lipn, Las, and Ly, denote the losses of RPN,
box classifier, and box regressor, respectively. As for
the fine-tuning, the few samples of novel classes in the
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dataset is employed to further fine-tune DFFPA to
adaptively accommodate novel classes, where DFF is
specially adjusted to adapt to novel classes.
Considering the parameters change of DFF affects the
fused features and weakens the detection of base
classes, the auxiliary feature F: ‘;ux from FPN of the base
training model is provided for each proposal box,
which is also fed into the subsequential network to
compute corresponding box classification loss Li*.
The fine-tuning loss Ly with weighted classification
loss is given by

L= Lipn + (Q-Egilsx + Lcls) + Lioc (4)

where « is the hyper-parameter to adjust the proportion
of classification losses L4* and L. With Ly, the
knowledge of base model could be better remained and
the whole detection performance is improved.
Algorithm 1 details the object detection process of the
proposed DFFPA method. Preprocessing(-) represents
data augmentation including RandomFlip and Expand
on input images. scoresgs and bboxes denote the
classification scores and the predicted boxes for
candidate objects. NMS(-) refers to the non-maximum
suppression.

4 Experiment

4.1 Experimental setup

In this section, the proposed DFFPA is testified on two
public datasets: PASCAL VOCI36l and MS COCO!37],
PASCAL VOC dataset with VOC 2007 and VOC
2012 is a well-known dataset with 20 categories. VOC
2007 and VOC 2012 are respectively divided into
training and validation sets. There are three different

Algorithm 1 DFFPA
Input: Input image s.

Output: Detection results det_res.
1: §" « Preprocessing(s);

2: Frles,j, Frzes’j « TwoStreamBackbone (s”);

3: Fl ;< DFF(FL P2 );

res,j’ " res,j
: Froi < ROI (RPN (FPN(U§:2 F{es,j)));
: Fout < PA(Fyo);
: scoresgs < Classifier (FC (Fout));
: bboxes « Regressor (FC (Foy));

: det_res «— NMS(scores,|s, bboxes);

O 0 3 N L b

: return det_res

base/novel splits, and in each split, 5 classes are chosen
as novel classes while the remaining classes are
designated as base classes. Novel split 1 contains the
novel classes of bird, bus, cow, motorbike, and sofa,
and other two splits are termed as novel split 2
(aeroplane, bottle, cow, horse, and sofa) and novel split
3 (boat, cat, motorbike, sheep, and sofa). For each
novel class, k-shot examples are involved in training,
where k represents the number of labeled instances
with values of 1, 2, 3, 5, and 10. Evaluation is
performed on the VOC 2007 test set. The average
precision with 50% IoU threshold (APs) of the novel
classes under different data split settings is reported.

MS COCO dataset comprises 80 classes. 20 classes
are regarded as novel classes and the others serve as
base classes. The proposed method is testified on MS
COCO 2014 validation dataset with k=10 and 30 shots.
AP, APy, AP,5, AP, AP, and AP, are considered as
evaluation metrics. Note that APy, AP,,, and AP, refer
to different average precision values at different scales
(Small, Medium, and Large).

Implementation details: Referring to the setting of
the existing methods including TFAUI'!, FSCE!U3], and
DMNetl2ll] the stochastic gradient descent[38] with the
momentum of 0.9 and the parameter decay of 0.0001 is
adopted to optimize our network end-to-end with a
mini-batch size of 16. During the base training phase,
the learning rate is set to 0.02, while for the few-shot
fine-tuning, it is adjusted to 0.015. Our experiments are
conducted on a device with NVIDIA TITAN RTX
GPU and Intel(R) Xeon(R) CPU E5-2660 v4 CPU.

4.2 Ablation studies

1) Ablation of DFFPA: To testify the performance of
our proposed DFFPA, its sixth variants DFFPA-I,
DFFPA-II, DFFPA-III, DFFPA-IV, DFFPA-V, and
DFFPA-VI are considered according to whether DFF,
PA, and weighted classification loss (wcl) are involved.
DFFPA-II uses addition fusion to replace DFF, where
the inputted features are fused through simple element-
wise addition. Table 1 presents the ablation results of
different variants of our DFFPA on novel split 1 of
PASCAL VOC in terms of APy, with 5-shot and 10-
shot. Compared with TFA, DFFPA-I and DFFPA-II
respectively adopt the modules of addition fusion and
DFF to refine the domain feature, and the results
indicates the merit of the proposed DFF. From the
results of TFA and DFFPA-IV, the solution with PA
module significantly improves the performance,
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Table 1 Comparison of different variants of our DFFPA on novel split 1 of PASCAL VOC.
Module AP4(%)
Method Feature fusion Patch-level Weighted classification
— - . 5-shot 10-shot
Addition fusion Dual DFF Attention (PA) loss (wcl)

TFA (Baseline) X X X 55.7 56.0
DFFPA-I V4 X X X 54.4 56.5
DFFPA-IT X v X X 59.1 64.1

DFFPA-III X v X V4 60.1 65.1
DFFPA-IV X X v X 60.9 63.9
DFFPA-V X X v N4 61.9 64.3
DFFPA-VI X V4 v X 62.1 65.2

DFFPA X v V4 V4 62.3 66.8

benefiting from the capability to effectively capture
key parts of objects and highlight distinctive local
regions. On the basis of DFFPA-II, DFFPA-VI
combines PA and the performance is further improved.
Besides, one can see from the results of DFFPA-VI and
DFFPA that the introduction of wcl is beneficial to the
detection. Overall, the proposed DFFPA performs the
best.

2) Ablation of DFF: The DFF module aims to fuse
features, where the binarization threshold p is a key
factor to control the distribution of features during
fusion. The smaller the value of p, the more the input
features are preserved. When p is 0, all input features
remain unchanged. We consider five variants of DFF
with different binarization threshold p and the
comparison on novel split 1 of PASCAL VOC in terms
of AP, AP, and AP, are shown in Table 2. One can
see that the value of p has a significant impact on the
result, and a bigger value shall decrease the detection
quality. p is chosen to 0.2 in our method to pursue the
best performance.

3) Ablation of PA: The PA is used to capture the
interest of patch of objects following the ROI pooling.
Notice that the input size of PA will limit the receptive
field of each patch and further affect the performance.
Thus, to select the proper input size, we conduct the
ablation of PA with different input sizes, and the
results are reported in Table 3. It can be seen that the

Table 2 Ablation of DFF on novel split 1 of PASCAL VOC.

Setting AP(%) AP;5(%) AP5(%)
DFF- 1 (p=0.0) 38.9 41.3 65.0
DFF-1I (p=0.2) 40.4 43.1 66.8
DFF-1II (p=0.4) 37.8 39.2 63.1
DFF-1V (p=0.6) 32.5 31.6 57.6
DFF-V (p=0.8) 30.8 30.4 53.7

Table 3 Ablation of PA on novel split 1 of PASCAL VOC.

Method  Inputsize  AP(%)  APy;(%)  APs(%)
PA- | 6x6 38.2 39.0 63.5
PA-1I 10x10 39.3 41.4 64.9
PA-III 12x12 39.5 42.6 64.7
PA-IV 8x8 40.4 43.1 66.8

input size 8 x 8 is preferable with its best performance.

4) Ablation of wcl: In the classification loss, an
additional loss L3* based on the auxiliary feature is
added upon the common loss Lgs, and a hyper-
parameter « is used to weight these two losses. To
explore the influence of «, different experiments are
conducted, as shown in Table 4, where « is set to 0.25,
0.50, 0.75, and 1.0, respectively. With the increasing of
a, the detection performance gradually improves.
According to the results, « is selected to 1.0, which
means equal treating of L™ and L.

4.3 Comparison with existing methods

We evaluate and compare the proposed DFFPA with
existing methods including MetaDetl8], Meta R-
CNNPL YOLO-ft-fulll9, FRCN-ft-full®l, FSRW!0]
TFA MPSRI[2I,  FSCEH3],  DCNetl26l,  and
DMNetl2ll, Table 5 shows the novel class detection
results under different shots (k=1, 2, 3, 5, and 10) in
terms of APy, on three splits of PASCAL VOC. It is
indicated that the proposed method performs well. In

Table 4 Ablation of wcl on novel split 1 of PASCAL VOC.

Setting AP(%) AP;5(%) AP5(%)
wcl- [ (@=0.25) 38.3 39.8 65.3
wcl-1I (@=0.50) 39.6 41.1 66.2
wcl-I1I (@=0.75) 39.7 41.0 66.5
wcl-1V (@=1.0) 40.4 43.1 66.8
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Novel split 1 Novel split 2 Novel split 3

Method
1 2 3 5 10 1 2 3 5 10 1 2 3 5 10
YOLO-ft-fullll® 6.6 107 125 248 386 125 42 116 161 339 13.0 159 150 322 384
FRCN-ft-full® 138 19.6 32.8 41.5 456 79 153 262 31.6 39.1 9.8 113 19.1 350 451
FSRWI10] 148 155 26.7 339 472 157 153 227 301 405 213 256 284 428 459
MetaDetl8! 189 20.6 302 368 496 21.8 231 278 31.7 43.0 206 239 294 439 441
MetaR-CNNPI 199 255 350 457 515 104 194 296 348 454 143 182 275 412 481
TFAI 39.8 36.1 447 557 56.0 235 269 341 351 39.1 308 348 428 495 498
MPSRI12] 41.7 - 514 552 618 244 - 392 399 478 35.6 - 423 48.0 49.7
FSCE!!3I 442 438 514 619 634 273 295 435 442 502 372 419 475 546 585
DCNetl260] 339 374 437 511 59.6 232 248 306 36.7 46.6 323 349 397 426 50.7
DMNetl21] 39.0 489 507 586 625 312 324 403 47.6 520 417 418 427 503 52.1
Ours 440 520 544 628 668 315 364 465 494 531 399 449 489 564 57.1

the 1-shot setting, our results on novel split 1 and novel target object well, which provides good feature

split 3 performs inferior to FSCE!!3] and DMNet!2!],
respectively. This discrepancy possibly comes from the
limited number of training samples available for the
novel class.

Figure 2 visualizes features learned by DFFPA on a
selected image from PASCAL VOC dataset. The
heatmaps are obtained through Grad-CAM (Gradient-
weighted class activation mapping)B°], which reflects
the degree of attention on different regions of the
image. For the original image in Fig. 2a, the features
from the res5 layers of base and elementary domains
are depicted in Figs. 2b and 2c, respectively. They are
fused by DFF and the result is shown in Fig. 2d.
Figures 2e and 2f provides the features outputted from
FPN and PA, respectively. The final detection result is
given in Fig. 2g. It is observed that the features
processed by DFF, FPN, and PA can focus on the

discriminability. In addition, Fig. 3 visualizes the
detection results generated by the proposed DFFPA on
PASCAL VOC dataset with 10-shot, where each row
corresponds to a novel split.

For MS COCO dataset, it comprises more target
object categories than PASCAL VOC dataset. This
means more challenging in manifold scenarios and the
detection results for the novel classes are presented in
Table 6. Overall, our DFFPA demonstrate good
performance. Figure 4 gives the detection results of the
proposed DFFPA with 30-shot on MS COCO dataset
and the novel objects can be well detected.

4.4 Robustness verification

To further verify the proposed method, different
interferences are imposed on four images from novel
split 1 of PASCAL VOC and the detection results with

Fig. 2 Visualization of features learned by DFFPA on the selected image from PASCAL VOC dataset. The heatmap is
generated by Grad-CAM!™, (a) Original image. (b) Feature from the resS layer of base domain. (c) Feature from the res5 layer
of elementary domain. (d) Fused result of (b) and (c). (e) Feature from FPN. (f) Output feature of PA. (g) Detection result.
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Fig. 3 Detection results of DFFPA with shot=10 on PASCAL VOC dataset. Results with confidence scores higher than 0.5 are

visualized.

Table 6 Comparison of different methods on MS COCO dataset in terms of AP, AP;,, AP,;, AP, AP,,, and AP, (%).

10-shot 30-shot

Method AP AP, AP, AP, AP, AP, AP AP, AP, AP, AP, AP,
YOLO-f-ful 1 31 79 17 07 20 63 77 167 64 04 33 144
FRCN-f-full® 65 134 59 18 53 113 111 216 103 29 88 189
FSRWI10) 56 123 46 09 35 105 91 190 76 08 49 168
MetaDet!$! 71 146 61 10 41 122 113 217 81 L1 62 173
MetaR-CNN®! 87 191 66 23 77 140 124 253 108 28 116 190

TFAUT 10.0 - 9.3 - - - 13.7 - 134 - - -
MPSRI!2! 98 179 97 33 92 161 141 254 142 40 129 230

FSCE!!3! 11.9 - 105 - - - 164 - 162 - - -
DCNetl26] 128 234 112 43 138 210 186 326 175 69 165 274
DMNetl2!] 100 174 104 34 83 161 171 297 177 48 147 265
Ours 130 240 124 32 141 213 186 337 187 69 209 277

confidence scores higher than 0.3 are illustrated in
Fig. 5. The first row presents the detection results of
original images. The second to seventh rows
correspond to the results after brightness enhancement
(25%), brightness reduction (25%), salt-pepper noise
with intensity of 3%, GridMask with size 3x3,
Gaussian blur with kernel size 5x5, and random mask.
In spite of these interferences, the proposed method
still achieves stable detection, which proves its
robustness.

4.5 Verification on actual scene

To further testify the proposed method, the
experiments on actual scene are conducted and the

results are shown in Figs. 6a and 6b, where the
concerned object classes include bottle, cup, teddy
bear, dining table, apple, banana, orange, remote, cell
phone, sports ball, and mouse. It is seen that the objects
are correctly detected.

5 Conclusion

This paper proposes a few-shot object detection
method with dual-domain feature fusion and patch-
level attention. Following the transfer learning-based
framework, a two-stream backbone is designed, and the
feature diversity is retained through parallel base and
elementary domains. The features from these two



Guangli Ren et al.: Few-Shot Object Detection via Dual-Domain Feature Fusion and Patch-Level Attention

1247

Fig. 4 Detection results of DFFPA with shot=30 on MS COCO dataset. Results with confidence scores higher than 0.3 are

displayed.

domains are fused in the dual-domain feature fusion
module, and adaptive feature refinement are achieved.
Then, a patch-level attention is presented to capture the
crucial parts of object features from ROI head for
better feature discrimination. In addition, a weighted
classification loss is given to assist the fine-tuning of
classifier. Experimental results on PASCAL VOC and
MS COCO datasets demonstrate the effectiveness of
the proposed method.
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