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Adaptive Long-Neck Network With
Atrous-Residual Structure for
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Guangli Ren , Junzhi Yu , Fellow, IEEE, and Fengshui Jing

Abstract—Instance segmentation is an important yet
challenging task in the computer vision field. Existing
mainstream single-stage solution with parameterized mask
representation has designed the neck models to fuse
features of different layers; however, the performance of
instance segmentation is still restricted to the layer-by-layer transmission scheme. In this article, an instance
segmentation framework with an adaptive long-neck (ALN) network and atrous-residual structure is proposed. The
long-neck network is composed of two bidirectional fusion units, which are cascaded to facilitate the information
communication among features of different layers in top-down and bottom-up pathways. In particular, a new cross-layer
transmission scheme is introduced in a top-down pathway to achieve a hybrid dense fusion of multiscale features and
weights of different features are learned adaptively according to their respective contributions to promote the network
convergence. Meanwhile, a bottom-up pathway further complements the features with more location clues. In this way,
high-level semantic information and low-level location information are tightly integrated. Furthermore, an atrous-residual
structure is added to the mask prototype branch of instance prediction to capture more contextual information. This
contributes to the generation of high-quality masks. The experimental results indicate that the proposed method achieves
effective segmentation and the outputted masks match the contours of objects.

Index Terms— Adaptive long-neck (ALN) network, atrous-residual structure, instance segmentation.

I. INTRODUCTION

INSTANCE segmentation aims to predict the object
locations and pixel-wise instance masks in the image from

a visual sensor. It is an important task in the computer vision
field with wide applications in robot manipulation [1] and
autonomous driving [2], [3].

Benefiting from the development of deep learning, the
research of instance segmentation has made substantial
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progress. Existing deep learning-based solutions are generally
categorized into two- and single-stage methods. The former
follows the procedure of detect-then-segment, which first
executes detection to generate a set of regions of interest
(ROIs) and then utilizes the features from these regions to
calculate the mask of each instance [4], [5], [6], [7], [8], [9].
The object detection result possibly affects the mask quality
with a longer processing time. In contrast, the single-stage
scheme directly obtains the pixel-wise instance masks without
relying on detection. It is subdivided into two types: mask
regression and parameterized mask representation. The first
one directly regresses instance masks by a classification
layer [10], [11], [12], where an object-related image patch
instead of whole image is used during training. The second
type predicts the mask-related parameters, which are then
assembled for the final masks [13], [14], [15]. It takes the
whole image from a visual sensor as input, which becomes
gradually prevailing as more global context information can
be captured. This is beneficial to remove the interference from
background and other instances of the same class.

After the input image provided by a vision sensor is
processed by a basic backbone, features form different
layers are obtained. The features in higher layer are rich
in semantics, while those in lower layer may provide the
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detailed location clues. Researchers have designed the neck
models to fuse features of different layers. A typical neck
model is feature pyramid network (FPN) [16]. Xie et al. [14]
and Bolya et al. [15] introduced it to their single-stage
instance segmentation methods. However, they mainly concern
one-way top-down information propagation between two
neighboring layers. This leads to that the detailed information
from the lower layers cannot be effectively fed back to
the high ones. To deal with this problem, Liu et al. [7]
made a good attempt in two-stage instance segmentation
method path aggregation network (PANet) by adding bottom-
up propagation in the neck model. It is worth mentioning that
existing instance segmentation methods have regarded the neck
model as an effective means for performance improvement;
however, the features in a layer are mainly passed to its
neighboring layer [7], [14], [15]. Such a layer-by-layer
transmission scheme inadequately fuses features from different
scales. If more cross-layer connections are involved, features
of different layers can be better fused, and an advanced neck
model is expected.

Another noteworthy aspect is parameterized mask represen-
tation based on the fused features provided by the neck model.
Compared to the octagon mask [13] and polar mask [14],
the mask with a prototype branch and corresponding
coefficients [15] is better, especially in efficiency. A problem
of the mask prototype branch is that it is insufficient to
capture contextual information, and thus, the local and global
information from different receptive fields cannot be fully
parsed. This shall increase the possibility of misclassification
and even leads to mask leakage where the mask of an
instance leaks to another one in the same class. In this
case, contextual relationship in the domain of complex
scene understanding [17], [18], [19] provides a promising
improvement direction.

To solve the problem of insufficient feature fusion in
existing neck models, we construct a novel ALN network
with two bidirectional fusion units to facilitate the information
communication among features of different layers in top-down
and bottom-up pathways. In the top-down pathway, multiscale
feature maps are fused by cross-layer connections, while the
bottom-up one further complements the features with more
location clues. Moreover, weights of different feature maps
are learned in an adaptive way according to their respective
contributions to promote the network convergence. As a result,
the high-level semantic information and low-level location
information are tightly integrated. For the mask prototype
branch, atrous convolution with residual connection (ACRC)
is introduced to capture contextual information. Therefore,
instance masks with high quality are attained. The main
contributions of this article are given as follows.

1) An ALN network with atrous-residual structure is
proposed for instance segmentation, which achieves
good accuracy and efficiency.

2) Two bidirectional fusion units are cascaded to create an
ALN network, which achieves a tight fusion of features
from different layers. Multiscale features are adequately
blended by cross-layer connections along the top-
down pathway; meanwhile, local location information
is supplied to high levels in the bottom-up pathway.

Besides, we refer to the object detection model
EfficientDet in [20] and omit the connections between
the topmost layer and other layers to simplify the
network.

3) An atrous-residual-based mask prototype branch is
constructed in the instance prediction to capture
contextual content for clear mask.

4) The experiments on the MS COCO dataset, including
the robustness test under different interferences, prove
the effectiveness of the proposed instance segmentation
method.

The remainder of this article is organized as follows. The
related work is reviewed in Section II. Section III describes
the proposed method in detail. The experiments are provided
in Section IV, and Section V concludes this article.

II. RELATED WORK

A. Two-Stage Instance Segmentation
The two-stage methods execute instance mask prediction

depending on the detected object regions, where the
regions can be represented in the form of bounding boxes.
Dai et al. [5] proposed multitask network cascades (MNCs)
for instance-aware semantic segmentation. It first extracts
shared convolutional feature maps from the whole input image,
which is followed by a region proposal network (RPN) to
regress the bounding boxes of objects in the image. Then,
the features from the bounding boxes in the feature maps
are extracted to predict the pixel-level segmentation mask
and category scores for each corresponding instance. A fully
convolutional instance-aware semantic segmentation method
(FCIS) is presented in [4], which produces the ROIs by
RPN and predicts the position-sensitive inside/outside score
maps at the same time. Then, the score maps within each
ROI are assembled to generate instance masks and categories
of objects. Mask region based convolutional neural network
(R-CNN) [6] adds a new mask branch on Faster R-CNN
to predict segmentation masks on each ROI generated from
RPN. By combining the original branches of classification
and bounding box regression, the positions and segmentation
masks of objects are acquired. To promote the information
propagation in Mask R-CNN, PANet [7] appends a bottom-
up path augmentation after the FPN backbone of Mask R-
CNN for better instance segmentation. Without RPN, the
mask branch can be appended after the object detector for
instance segmentation. RetinaMask [8] adds an instance mask
prediction head after the RetinaNet detector [21], where the
feature maps corresponding to bounding boxes detected by
RetinaNet are sent to the mask prediction head to obtain the
instance masks. Besides, an adaptive loss is introduced to
improve robustness during training. CenterMask [9] adds a
spatial attention-guided mask branch after fully convolutional
one-stage (FCOS) detector [22] to focus on meaningful pixels
and suppress uninformative ones in the image. This mask
branch takes the features in the bounding boxes generated from
FCOS as inputs and predicts the segmentation masks inside
each detected box with the help of spatial attention module.
A problem of the two-stage procedure is that it is usually
time-consuming. Also, the mask quality is unsatisfactory.
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B. Single-Stage Instance Segmentation
Earlier research directly regresses the pixel-wise instance

mask based on an input patch [10], [11], where the
procedure of mask prediction is similar to that of semantic
segmentation [23], [24]. DeepMask (DM) [10] predicts
the segmentation mask in the top branch and object
score that describes how likely the input patch contains
an object in the bottom branch. Since the positions of
instances need to be distinguished, DM requires that the
input patch is object-centered and it fully contains this
object during training. SharpMask (SM) [11] further takes
features from multiple layers into account on DM and the
quality of mask is improved. Still, the training process is
complicated due to the tedious training patches. Recently,
researchers explore parameterized representations of instance
masks [13], [14], [15]. ExtremeNet [13] represents an
object with five extreme-point parameters, including topmost,
leftmost, bottommost, rightmost, and center points. It adopts
a keypoint estimation framework to directly predict these
five parameters, with which an octagon mask is generated to
segment the object instances in the image. Octagon masks
can only provide a rough outline, which cannot accurately
segment the pixel boundaries of an object. PolarMask [14]
transforms the instance segmentation problem into instance
contour prediction, which applies task-specific heads after
the feature extraction to classify the pixel corresponding to
mass center of instance and regress the dense distances of
rays between mass center and contours. Nevertheless, with
the increase of number of points located on the contour,
the efficiency will be affected. Bolya et al. [15] proposed a
real-time instance segmentation method YOLACT to calculate
instance masks by combining the predicted parameters of mask
prototypes and the corresponding coefficients in the detection
branch. However, it adopts the layer-by-layer transmission
mechanism, which cannot fully combine the high-level
semantic information and the low-layer location information
from different layers. This decreases the representation ability
of features extracted from its backbone with ResNet [25]
and the FPN neck model and thus affects the segmentation
accuracy and the mask quality. In this article, a new ALN
model is proposed and it employs cross-layer transmission
with dense connections to effectively handle multiscale
information.

III. INSTANCE SEGMENTATION WITH ALN NETWORK
AND ATROUS-RESIDUAL STRUCTURE

Fig. 1 shows the proposed instance segmentation network,
which is composed of a visual encoder, an ALN network,
and instance prediction. The visual decoder is used to provide
multilevel feature maps with different scales. On this basis, the
ALN network with bidirectional fusion units is responsible
for feature fusion from high and low levels. This enhances
the discrimination of features, which are fed into instance
prediction heads for the detection results and instance masks.

The pipeline of the proposed method is given as follows.
The input is first processed by the visual encoder and the
multilevel feature maps denoted with P0i , i = 3, 4, . . . , 7 are
acquired. They are sent to the first bidirectional fusion

unit of ALN network. The first fusion unit employs dense
cross-layer connections, and high-level semantic information
and low-level location information are adaptively fused in
a top-down way. The outputted feature maps are then
processed by a bottom-up augmentation pathway to provide
feature maps P1i , i = 3, 4, . . . , 7. The results of the first
unit are further refined by the second fusion unit with
the same structure, and we have feature maps P2i , i =

3, 4, . . . , 7 whose sizes are consistent with P1i . Taking the
input red, green, and blue (RGB) image with the size
550 × 550 × 3 as an example, the sizes and channel numbers
of feature maps are shown in Fig. 1. In the instance prediction
heads, each outputted feature map of ALN network is operated
with a convolution layer to predict the bounding boxes B
of objects, confidence C that the detected objects belong to
a class, and mask coefficients Z . Also, the mask prototype
branch with an atrous-residual structure takes feature maps
P23, P24, and P25 as inputs to capture different contextual
content for better masks prediction.

A. Visual Encoder
The visual encoder is adopted to extract features of

the input RGB image from a vision sensor. Compared to
visual geometry group (VGG) [26] encoder in the instance
segmentation method DM [10], ResNet [25] in the SM [11]
shows an advantage in feature extraction as it builds deeper
convolution layers and overcomes the gradient explosion and
vanishing problems. Here, we directly employ the ResNet
structure as the backbone in our visual encoder, which
is initialized with the weights pretrained on the ImageNet
dataset [27]. As shown in Fig. 1, the feature maps generated
from each layer in ResNet are denoted as P01, P02, P03, P04,
and P05. In order to enrich higher level semantic information,
the feature map P05 is successively downsampled to generate
feature maps P06 and P07. We regard P03, P04, P05, P06, and
P07 as the outputs of the encoder.

B. ALN Network
This network aims to enhance the features from the visual

encoder and it is composed of two bidirectional fusion units
with the same architecture. These two units are cascaded to
achieve the fusion of semantic information from high levels
and location information from low levels. Inside each unit, the
adaptive hybrid fusion (AHF) is implemented in a top-down
manner, which is followed by a bottom-up pathway to further
augment the details of features.

1) Adaptive Hybrid Fusion: The structure of AHF is shown
in Fig. 2. It takes P in

r3, P in
r4, P in

r5, P in
r6, and P in

r7 as inputs, where
these five feature maps gradually decrease in spatial size from
low level to high level, and r represents the index of the
bidirectional fusion unit. Each level receives the feature maps
from the current layer and those from other layers. To achieve
the fusion of current layer, a hybrid scheme is designed.
For layers above and below current layer, we, respectively,
choose the fused results and input feature maps. In this way,
more semantic and location information is involved. As feature
maps in different layers vary in dimensions, including size
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Fig. 1. Structure of the proposed instance segmentation network, which consists of a visual encoder, an ALN network, and instance prediction.
The input is first processed by the visual encoder to output multilevel feature maps. These feature maps P0i, i = 3,4, . . . ,7 are fused by the long-
neck network with two cascaded bidirectional fusion units to output the fused feature maps P2i. In each bidirectional fusion unit, the input feature
maps are sent to the AHF, and by dense cross-layer connections, high-level semantic information and low-level location information are fused in
a top-down way. In addition, a bottom-up augmentation pathway with accurate location signals in lower layers is also added to further enhance
the feature hierarchy. Afterward, the fused feature maps are processed by instance prediction heads, which insert an atrous-residual structure into
the mask prototype branch to capture different contextual contents. Finally, Bbox B, corresponding confidence C, and mask M are obtained. M is
calculated by matrix multiplication between the mask prototypes Y and Zf, where Zf is the result after NMS is operated on the mask coefficient Z.

Fig. 2. Structure of the AHF.

and channel number, they have to be adjusted to adapt to the
current fusion layer. The resultant feature maps P3, P4, P5,
P6, and P7 are then fused by weighted addition, where each
weight is adaptively learned. Afterward, the corresponding
convolutional layer is imposed and we get the fused results
Pmid

r7 , Pmid
r6 , Pmid

r5 , Pmid
r4 , and Pmid

r3 by a top-down way.
Taking the generation of Pmid

r5 as an example, according
to the aforementioned description, we choose the upper layer
features Pmid

r6 and Pmid
r7 , the lower layer features P in

r3 and P in
r4,

and the current one P in
r5, where the former four features should

follow the dimension of P in
r5 by upsampling or downsampling

when fusing. The resultant feature maps are operated by
weighted addition and convolution layer to obtain Pmid

r5 .
Note that the hybrid fusion does not occur in the topmost
layer, which means that the output Pmid

r7 is the same as its
input P in

r7.
The output feature maps Pmid

rq can be formulated as follows:

Pmid
rq = Conv3

 7∑
j=3

W j
rq Pj

 , q = 3, 4, 5, 6 (1)

where W j
rq = (w

j
rq/(δ +

∑
d wd

rq)) and w
j
rq is the learned

weight, j= 3, 4, . . . , 7. Conv3(·) refers to a 3 × 3 convolution
with batch normalization.

2) Bottom-Up Augmentation Pathway: This component
receives the feature maps from Pmid

r3 to Pmid
r7 and fuses them

gradually along a bottom-up direction, which is beneficial to
supplement more local location information to high levels.
Each layer receives the dimension-adjusted feature map from
its lower layer and its corresponding AHF output for further
fusion along a bottom-up direction. For the lowest layer, only
its AHF output is involved. Still, this fusion employs adaptive
weighting due to the fact that different features contribute
differently to the fusion result. It is worth mentioning that
for each of the middle three layers, the input of corresponding
AHF layer is involved in enriching information.

Take Pr4 for illustration. The input feature map P in
r4, the

output feature map Pmid
r4 of corresponding AHF, and the

downsampling feature map of Pr3 are combined by adaptive
weighting addition, and Pr4 is then obtained. In particular, the
generation of Pr7 does not consider the input feature map of
corresponding AHF and Pr3 is in coincidence with the output
feature map of AHF. Finally, the results Pr3, Pr4, Pr5, Pr6,
and Pr7 of a bidirectional fusion unit are obtained as follows:

Prq =

len(Trq)−1∑
b=0

Sb
rq T

b
rq

(2)

Trq =



{
Pmid

rq

}
, q = 3{

Pr(q−1), Pmid
rq , P in

rq

}
, 3 < q < 7{

Pr(q−1), Pmid
rq

}
, q = 7

(3)

where Trq denotes the set of feature maps to be fused at the
qth layer, Sb

rq = (sb
rq/(δ +

∑len(Trq )−1
e=0 se

rq)), and sb
rq is the

learned weight for the bth feature map T b
rq in Trq .

After two bidirectional fusion units are applied in sequence,
we acquire the output feature maps P2i of the long-neck
network, i = 3, 4, . . . , 7.
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Fig. 3. Structure of the mask prototype branch. The feature maps P23, P24, and P25 from the ALN network are processed by summation and
convolution to acquire the feature map Pf, which will go through two cascaded ACRC units to capture contextual information and output feature
map Pa. After that, convolutions are imposed on Pa for the generation of mask prototypes.

C. Instance Prediction
The instance prediction endeavors to predict the pixel-

wise instance mask of an image. Following the procedure
of YOLACT, it consists of two branches: object detection
and mask prototype branches. The former predicts the
object detection results, including object bounding boxes
B, confidence C related to object categories, and mask
coefficients Z . The latter outputs the mask prototypes Y ,
which is combined with mask coefficients to generate the final
segmentation mask for each instance.

1) Mask Prototype Branch: The structure of this branch is
shown in Fig. 3. Different from YOLACT that only uses the
bottom feature map as input, we choose the lower three feature
maps P23, P24, and P25 as inputs. The deeper feature maps P26
and P27 are omitted as their information is severely diluted
due to upsampling and thus have little impact on the mask
prototypes Y . Specifically, the input feature maps P24 and P25
are first upsampled to the same size as P23. After they are
added, a convolution layer with 3 × 3 kernel is applied to
capture local neighboring features and the feature map P f
is acquired. In order to perceive more contextual information,
we introduce ACRC. Two ACRC units are cascaded to process
P f . In each ACRC unit, the outputs of two parallel atrous
convolutions with atrous rates of 1 and 2 are concatenated in
channel, which is followed by a convolution layer to facilitate
the information associated with the channel reduction. Finally,
a residual connection is exerted with the consideration of the
input of the ACRC unit for the convergence of the mask
prototype branch and preventing gradient explosion. We label
the output of the second ACRC unit as the feature map Pa ,
which is further processed by convolutions to generate the final
mask prototypes Y . With the assistance of ACRC module, the
prototype generation branch improves its ability to distinguish
the boundaries of objects and improve mask quality.

2) Instance Mask Generation: As shown in Fig. 1, the
mask coefficient Z is processed by nonmaximum suppression
(NMS) to screen reliable instances. The filtered mask
coefficient Z f is executed a matrix multiplication with the
mask prototypes Y , which is followed by a sigmoid activation
function and the instance mask M is generated

M = sig
(

Y Z T
f

)
(4)

where sig(·) represents the sigmoid activation function.
Y ∈ Rhm×wm×nm , hm = H/8, wm = W/8, and H and W
denote the height and width of the input image, respectively.

nm is the number of mask prototypes. Z f ∈ Rn×nm , and n
denotes the number of instances surviving NMS.

Algorithm 1 describes the proposed instance segmentation
algorithm based on the ALN network with atrous-residual
structure, where Nr is the number of bidirectional fusion
units. fEncoder(·) refers to the encoding operation on the input
image. fAHF(·) and fBU(·) describe the processing of AHF
and bottom-up augmentation, respectively. fPre(·) produces
the detection result and mask coefficients. fNMS(·) represents
NMS and f Pro

ACR(·) is used to generate mask prototypes of
objects.

Algorithm 1 Instance Segmentation Based on Adaptive Long-
Neck Network With Atrous-Residual Structure

Input: input image I .
Output: Bbox B, confidence C , and mask M .
1: P0i = fEncoder(I ), i = 3, 4, . . . , 7;
2: for r ∈ {1, . . . , Nr } do
3: {Pmid

ri }
7
i=3 = fAHF({P(r−1)i }

7
i=3);

4: {Pri }
7
i=3 = fBU({Pmid

ri }
7
i=3);

5: end for
6: (B, C, Z) = fPre({PNr i }

7
i=3);

7: Z f = fNMS(Z);
8: Y = f Pro

ACR(PNr 3, PNr 4, PNr 5);
9: M = sig(Y Z T

f );
10: return B, C, M .

D. Loss Function
The loss function to train the model is composed of three

parts: the location loss L loc of B, the classification confidence
loss Lconf, and the mask loss Lmask

L (b, c, l, g) = αLconf + βL loc + γ Lmask (5)

where b represents the selected valid boxes using the condition
in [28]. α, β, and γ are hyperparameters, which are set to 1,
1.5, and 5.5, respectively. c, l, and g represent classification
confidence, the positions of the predicted boxes, and the
ground-truth boxes, respectively.

The calculation of L loc is given as follows [28]:

L loc =

Ndb∑
i t, j t∈Pos

∑
m∈{cx,cy,w,h}

v
p
it,jtsmoothL1

(
lm
it − ĝm

jt

)
(6)

Authorized licensed use limited to: Institute of Software. Downloaded on November 27,2024 at 06:41:23 UTC from IEEE Xplore.  Restrictions apply. 



GENG et al.: ALN NETWORK WITH ATROUS-RESIDUAL STRUCTURE FOR INSTANCE SEGMENTATION 7791

TABLE I
COMPARISON OF DIFFERENT VARIANTS OF OUR ALNMASK METHOD ON THE COCO VAL2017 DATASET IN TERMS OF AP (%)

where Ndb is the number of matched default boxes, lm
it refers

to the predicted box, and ĝm
jt represents the intermediate

deformation variables derived from the ground-truth box and
default box. v

p
it, j t is a Boolean variable to indicate whether the

itth default box and the jtth ground-truth box are matchable.
Pos denotes the positive samples. cx , cy, w, and h are
x-coordinate and y-coordinate of the center, the width, and
height of the box, respectively.

The classification confidence loss is given as follows [28]:

Lconf = −

Ndb∑
i t∈Pos

v
p
it, j t log

(
ĉp

it
)
−

∑
ig∈Neg

log
(

ĉ0
ig

)
(7)

where ĉp
it = (exp(cp

it )/
∑

p exp(cp
it )), Neg refers to negative

samples, and ĉ0
ig denotes the confidence loss for a negative

sample.
For the mask loss Lmask, it is expressed as a binary

cross-entropy loss between the predict mask M and the
corresponding ground-truth mask Mg [15]

Lmask = EBC
(
M, Mg

)
(8)

where EBC(·) denotes the pixel-wise binary cross entropy.

IV. EXPERIMENTS

A. Experimental Setup
In this section, extensive experiments are executed to

validate the effectiveness of the proposed ALNMask on the
public dataset MS COCO [29]. This dataset includes 80 object
categories. The whole MS COCO dataset can be split into three
parts: train2017, test-dev2017, and val2017 with 118k, 40k,
and 5k images, respectively. Here, we train our model on the
train2017 dataset and evaluate it on test-dev2017 and val2017
datasets. The evaluation criteria consider the average precision
(AP) with the intersection over union (IOU) thresholds
50%, 75%, and 95% between the predicted mask and the
ground truth, which are denoted as AP50, AP75, and AP95,
respectively. Also, the mean AP for all the objects is adopted.
Moreover, to compare the instance segmentation results for
different object sizes, all the objects in the dataset are divided
into three categories: small, middle, and large. Accordingly,
the mean APs are denoted as APS , APM , and APL .

During training, the stochastic gradient descent (SGD)
optimization is used with the weight decay and momentum
of 5 × 10−4 and 0.9, respectively. The initial learning rate is
0.8, and it is set to 0.5 after 200k iterations. Data augmentation
is imposed on the training data by changing the brightness,

contrast, and size of images. Our method runs on a platform
with NVIDIA GTX1080 GPU with 8-GB memory and Intel
Core i7-7770HQ CPU. In addition, the anchors with scales
[32, 64, 128, 256, 512] are applied to the feature maps
P23–P27, respectively. These scales can be combined with
aspect ratios to generate different forms of anchors for better
object detection, where aspect ratio refers to the ratio between
the width and height of an anchor. The more accurate the
setting of aspect ratios is, the better the network is trained.
According to the size relationship of width and height of
objects, three cases of anchors are concerned. When the object
width is shorter than its height, its ratio is typically less than
1/2 and the aspect ratio is set to 1/4. For the case that the
width and height of object are close, the aspect ratio is set
to 4/5 as they are hard to be strictly equal. Besides, we set
the third aspect ratio to 2 for the case where widths of some
objects are larger than heights. In summary, three aspect ratios
[1/4, 4/5, 2] of anchors are chosen.

B. Ablation Evaluation
To verify the performance of our proposed ALNMask

method, its five variants are involved according to whether
the FPN architecture [16], ALN network, original mask
prototype branch [15], and ACRC-based mask prototype
branch are considered. Besides, two parameter settings for
aspect ratios are also involved: [1, 1/2, 2] [15] and [1/4,
4/5, 2]. Table I presents the comparison results of different
variants on the val2017 dataset in terms of accuracy AP.
Comparing ALNMask-I with ALNMask-II, one can see that
the ACRC-based mask prototype branch with only the bottom
feature map P23 is better than the original mask prototype
branch in accuracy. Also, our ACRC-based mask prototype
branch with three inputted feature maps P23, P24, and P25
further promotes the performance, which can be seen from
the result of ALNMask-III. For ALNMask-IV with an ALN
network, it achieves a higher performance than ALNMask-I,
which indicates that our proposed ALN outperforms the FPN
architecture. With the combination of ALN and ACRC-based
mask prototype branch, the accuracy is further improved.
Based on ALNMask-V, the aspect ratios are changed from
[1, 1/2, 2] to [1/4, 4/5, 2] and the performance reaches the
best (see the result of ALNMask).

C. Comparison With Existing Methods
In this section, the proposed method ALNMask is first

compared with existing instance segmentation methods on
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TABLE II
COMPARISON OF DIFFERENT METHODS ON THE COCO TEST-DEV2017 DATASET

the COCO test-dev2017 dataset. These methods include
MNCS [5], FCIS [4], Mask R-CNN [6], DM with MultiPath
network (DM + MPN) [12], SM with MPN (SM +

MPN) [11], PolarMask [14], and YOLACT [15], where the
first three methods belong to the two-stage solution and others
are single-stage methods. Table II presents the accuracy and
efficiency results of different methods on the COCO test-
dev2017 dataset. Also, the backbones and image sizes of
these methods are provided. In terms of AP, two-stage Mask
R-CNN performs the best, and single-stage methods, including
PolarMask, ALNMask, and YOLACT, attain good results.
From the processing speed, YOLACT runs at a speed up to
24.3 frames/s and ALNMask runs at 17.2 frames/s. Overall,
our method achieves the balance of accuracy and efficiency.

Notice that the AP gap reflects the difference of mask
matching between the predicted mask and ground truth for
two methods under the same IOU threshold. We observe
from Table II that the AP gap between Mask R-CNN and
our ALNMask at the 50% IOU threshold is 8.3%, while
the AP gap is reduced to 5.4% at the 75% IOU threshold.
This inspires us to further compare the AP gap at the 95%
IOU threshold. The AP95 of ALNMask is 1.91%, while the
values of Mask R-CNN and YOLACT are 1.3% and 1.6%,
respectively. This brings in a negative AP gap at the 95% IOU
threshold. Actually, AP95 is an important criterion to evaluate
the mask quality of the predicted instances. The higher AP95
is, the closer the predicted mask and ground truth are. It is
indicated that our ALNMask is helpful for good masks.

Fig. 4 visualizes the instance mask results of different
methods, including ALNMask, YOLACT, and Mask R-CNN
on the eight selected images of the test-dev2017 dataset.
For each image, a local area is enlarged to illustrate the
mask detail. Considering that Mask R-CNN mainly releases
the office weights [30] with the backbone of R-50-FPN,
ALNMask and YOLACT also adopt the same ResNet structure
for a fair comparison. Generally, the flaws of masks may be
divided into the following types: discontinuity, coarse edge,
background blending, mask leakage, and incompleteness.
Mask discontinuity means that the mask of an object is
disconnected, such as the masks of cat and banana segmented
by YOLACT in Fig. 4(a) and (h), respectively. The coarse
edge corresponds to the low mask boundary of an object. This
phenomenon occurs in the cow mask provided by YOLACT
in Fig. 4(b), giraffe mask of Mask R-CNN in Fig. 4(d), and

cup mask from YOLACT in Fig. 4(f). The third flaw is the
background blending and in this case background appears on
the mask of foreground object. Please see the boat masks
of ALNmask, YOLACT, and Mask R-CNN in Fig. 4(c), and
dining table mask provided by ALNmask in Fig. 4(f). Another
defect is mask leakage, which denotes that the mask of an
instance leaks to another one in the same class. It is found
in the giraffe mask of YOLACT in Fig. 4(d). There is also
another situation called mask incompleteness, where only local
mask instead of the whole one of an object is outputted.
The broccoli and banana masks given by Mask R-CNN in
Fig. 4(g) and (h) are examples. On the whole, our ALNMask
offers masks of objects with good boundary and matching with
ground truth.

It is important to note that Mask R-CNN predicts bounding
boxes whose number is usually more than objects number
due to plentiful proposals provided by the detector, especially
for large objects. This may be lead to generate several local
masks for an object. On one hand, this processing improves
the accuracy; however, on the other hand, the mask quality
is reduced and one local mask of an object often overlaps
with other local ones or the global one. The probability of
false detection is also increased. Take the mask results in
Fig. 4(a) as an example. For this image with two cats, Mask
R-CNN outputs three cat masks, where the result of a leg
is discontinuous. In this case, YOLACT acquires the correct
masks with two cats, and there still exists the discontinuity
of leg segmentation. By contrast, the proposed ALNMask
obtains effective masks. It is also observed that the number of
masks generated by Mask R-CNN is generally larger. Overall,
the evaluation of an instance segmentation method needs to
consider both the accuracy and the mask quality.

Table III provides the comparison of different methods
on the COCO val2017 dataset, where Mask R-CNN,
CenterMask [9], ExtremeNet [13], PolarMask [14], and
YOLACT [15] are involved. The first two methods are
two-stage methods and the rest are categorized to single-
stage solution. To better compare ALNMask and YOLACT,
ALNMask-RL, ALNMask-IS, YOLACT-RL, and YOLACT-
IS are considered according to different backbones and image
sizes. Also, ALNMask-L with large image size [800, 1333] is
concerned. The results indicate that our method performs well.
Compared with YOLACT, ALNMask with the same backbone
and image size achieves better instance segmentation accuracy
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Fig. 4. Comparison of instance mask quality of different methods (R-50-FPN) for eight selected images from the COCO test-dev2017 dataset.

TABLE III
COMPARISON RESULTS OF DIFFERENT METHODS ON THE COCO VAL2017 DATASET

at the expense of processing time. In general, the proposed
ALNMask method is considered as effective.

D. Qualitative Results
We choose 20 images on each of the COCO test-dev2017

and val2017 datasets, and the results of instance segmentation
provided by ALNMask are presented in Figs. 5 and 6. For
an image, the masks of objects are labeled different colors
randomly. The objects of interest are related to animal
(elephant, bird, and cow), traffic (traffic light, car, motorcycle,
and bus), furniture (couch, chair, and dining table), household
appliances (oven and remote), and person. In addition, the
container (bowl, cup, and wine glass) in the table and the
food (cake, sandwich, donut, and orange) are also concerned.

As shown in the second rows of Figs. 5 and 6, ALNMask
successfully distinguishes different instances of the same
category from the simple scene with two birds, overlapping
scene with three buses to the complex scene such as six
motorcycles. Even an object is split into several pieces or part
of an object is observed, and ALNMask can also complete the
segmentation. For example, four orange pieces are discovered
in the first image of the last row of Fig. 6, and a person and his
handheld cell phone are also found in the second image of the
third row of Fig. 5. Besides, it is able to segment the objects
within a scene from smaller size to larger size. In the last
image of the second row of Fig. 5, both small person and large
buses are segmented. The results show that ALNMask can
achieve segmentation with good performance and the extracted
masks can match the contours of objects.
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Fig. 5. Visualization of predicted instance masks and bounding boxes of our ALNMask for images from the COCO test-dev2017 dataset.

Fig. 6. Visualization of predicted instance masks and bounding boxes of ALNMask for images from the COCO val2017 dataset.

E. Robustness Verification
Five interferences are imposed on an original image

to verify the robustness of the proposed method, where
YOLACT and Mask R-CNN are also involved for comparison.
We conduct the experiments on an image from the COCO
val2017 dataset, where there are multiple objects on a wooden
tray placed in furniture. The instance segmentation results are

shown in Fig. 7 and the methods include ALNMask-50 with
R-50-ALN, ALNMask-101 with R-101-ALN, YOLACT-50
with R-50-FPN, YOLACT-101 with R-101-FPN, and Mask
R-CNN. The first row of Fig. 7 gives the original image as
well as the polluted images after Gaussian blur with kernel size
of 3 × 3, brightness enhancement (30%), Gaussian noise with
standard deviation of 0.008, salt-and-pepper noise with the
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Fig. 7. Instance segmentation results of different methods under interferences.

ratio value of 0.08, and darkness (−30%) are exerted. From
the whole results of Mask R-CNN, it has the advantage in
capturing details, which is beneficial to mine small objects.
For example, two spoons near the cups can be segmented
(sometimes they are regarded as the knife class). However,
the object masks provided by Mask R-CNN are incomplete.
Besides, the corner of the wooden tray is segmented as the
book class three times. Compared to two-stage Mask R-CNN,
YOLACT and ALNMask are good in terms of mask quality.
Next, we focus on comparison of these two methods under
different interferences.

We first check the segmentation results of image back-
ground. ALNMask-101 simultaneously outputs the bed and
dining table classes four times and predicts dining table and
bed classes in other two images. Accordingly, ALNMask-
50 treats backgrounds of all six images as the dining table
class. YOLACT series also regard background as dining
table or bed class. Actually, the local surfaces of bed and
dining table are similar, and in this case, it is acceptable
to regard the background as either the dining table or
bed class.

Furthermore, the four objects, including three cups and
a donut on the tray are investigated. For ALNMask-
101, these four objects are correctly segmented in four
out of six images (see the first, second, third, and sixth
columns). Among these four images, YOLACT-101 also
outputs correct results. Meanwhile, ALNMask-101 has a

Fig. 8. Experiment in an actual scene. (a) Original image. (b) Instance
segmentation result.

higher average segmentation accuracy with good details than
YOLACT-101. Correspondingly, ALNMask-50 achieves the
correct segmentation of three cups and treats the donut as
the donut and cake classes in three out of four times. For
YOLACT-50, it gives correct results in the third and sixth
images, and there exists a cup that is treated as the cup and
bowl classes in the first and second images. In addition, for
the image in the fifth column, YOLACT-50 acquires the best
results with two cups and one donut, and our ALNMask-101
thinks the donut as the cake class. As for the image shown
in the fourth column, ALNMask-101 behaves well with the
results of one cup and one donut, and the YOLACT series
consider a cup as the donut class.

Besides, there are plates under cup and donut, and YOLACT
series partially mine them (bowl class). Moreover, affected
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by the image and interferences, ALNMask-50 presents person
class once among six images, YOLACT series output person
class four times, whereas no person class is found in the results
of ALNMask-101.

F. Experiment in an Actual Scene
We further testify the proposed ALNMask in an actual

scene and the experimental result is shown in Fig. 8. Fig. 8(a)
presents the original image, and there are five objects of
interest placed on a table: two cups, two apples, and a bottle.
From the instance segmentation result shown in Fig. 8(b),
ALNMask segments different objects.

V. CONCLUSION

In this article, an instance segmentation method with an
ALN network and an atrous-residual structure is proposed. The
whole network is composed of three parts: a visual encoder,
a long-neck network, and instance prediction. The first part
is used to extract multilevel features from the vision image,
and the second part implements the tight fusion of high- and
low-level features in the top-down and bottom-up pathways
with the help of cross-layer dense connection scheme. The
third part is responsible for detection results and instance
masks by an atrous-residual-based mask prototype branch.
The experimental results demonstrate the effectiveness of the
proposed method. It is observed that in crowded scenes, there
sometimes exists unsegmented object because of shadowing
from the foreground objects, such as an unnoticed sheep in
the second image of the second row of Fig. 6. In the near
future, we shall focus on mining more location information to
improve the performance of instance segmentation network in
crowded scenes.
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