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Abstract—Existing monocular visual simultaneous local-
ization and mapping (SLAM) mainly focuses on point and
line features, and the constraints among line features are not
fully explored. In this paper, a multi-feature monocular SLAM
with ORB points, lines, and junctions of coplanar lines is
proposed for indoor environments. To create 3D junctions of
coplanar lines, an adaptive coordinate confidenceis designed
to describe the coordinate stability of 2D junctions on the
image plane. Based on the matched 2D junctions between
the current keyframe and other two associated keyframes,
a multi-view coplanarity verification is performed for 3D
junction creation. Moreover, reprojection verification is con-
ducted to update the observation of 3D junction, which is
used to dynamically update the confidence of coplanarity for
confidence-based local bundle adjustment. The camera pose
is optimized through multiple constraints of ORB points, lines,
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and junctions of the coplanar lines. As a result, the performance of monocular SLAM is improved. The experiment

verification shows the effectiveness of the proposed method.

Index Terms— Junction of coplanar lines, confidence of coplanarity, multi-view, multi-feature monocular SLAM.

|. INTRODUCTION

N RECENT years, simultaneous localization and mapping

(SLAM) has received much attention in the fields of
robot localization and autonomous driving. LiDAR SLAM
and visual SLAM are two mainstream branches. The for-
mer calculates the relative motion and pose changes of the
LiDAR sensor by point cloud matching [1], [2], and pre-
cise depth measurements provide the potential for accurate
pose estimation. However, this type of sensor is relatively
expensive. Also, the environment representation through point
cloud is relatively limited. Compared with LiDAR, the visual
sensors enjoy the advantages in size, weight, and price
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with abundant information, which makes visual SLAM more
popular [3]. For the visual SLAM, the pose of the visual
sensor can be estimated by image feature extraction and
matching.

In the early stage of visual SLAM, limited by comput-
ing resources, filter-based methods were mainly used [4].
However, complex and large-scale scenarios inevitably
increase the feature amount that needs to be processed. In this
case, the efficiency of the filter-based SLAM is affected.
To solve this problem, researchers began to learn from graph
optimization theory in structure from motion (SFM) [5],
especially bundle adjustment (BA). The computational cost
of the initial BA is high, which affects the real-time per-
formance of visual SLAM with a large number of features
and camera poses to be optimized. The concept of keyframe
as well as graph optimization acceleration schemes was then
proposed [5]-[8]. These methods can be further divided into
two categories: direct and feature-based methods. The for-
mer [9]-[11] uses all pixels to estimate camera pose with
the assumption of gray scale invariant, which is robust to
motion blur, however, illumination changes can affect its
performance. The latter achieves pose estimation with sparse
features by optimizing the reprojection error between frames.
This solution has better robustness, and typical methods
include ORB-SLAM [6] and PL-SLAM [8]. Point feature
whose local texture changes significantly is commonly used.
As a kind of continuous geometric element, the line feature is
also adopted with its rich structural description. It should be
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pointed out that these two features are not opposites. Many
researches combine point and line features to improve per-
formance of the system [8], [12]-[17], and they mainly add
constraints based on line endpoints. Qian et al. proposed a
visual SLAM using egocentric stereo sensor to ensure accurate
and robust dynamic egolocalization performance, where bags
of point and line word pairs are designed in loop closure
detection [12]. This method has been successfully applied
for wearable-assisted substation inspection with good prac-
ticability. Upon RGB-D sensor, Fu et al. proposed a com-
plete high-accuracy SLAM based on a combination of points
and lines, which achieves better adaptability to low texture
indoor environments [13]. Actually, there also exist geometric
constraints for line pairs. If these geometric constraints are
further explored, the SLAM system with better performance is
expected.

In the field of projective geometry, the intersection of lines
is a common phenomenon, and the junction of two lines often
implies geometric constraints. As Kim and Lee pointed out
in [18], the junctions of coplanar lines have been proven to
have favorable localization property. By introducing the junc-
tions of coplanar lines as new features into the visual SLAM,
the features can be further enriched, which is equivalent to that
the coplanar constraints of lines are implicitly added. And it
is beneficial to improve the accuracy of pose estimation. The
extraction of the coplanar lines’ junctions is still challenging,
especially for monocular SLAM. This involves not only the
data association of the same line feature among multiple
frames but also the coplanar relationship between different
lines.

In this paper, we exploit the application of junctions of
coplanar lines with the combination of points and lines for
a monocular SLAM system in indoor environments. The
contributions are threefold:

« A novel monocular SLAM using points, lines, and junc-
tions of coplanar lines is proposed. This solution aims to
improve performance by combining multiple features.

o 3D junctions of coplanar lines are created in the local
mapping based on matching pairs of 2D junctions with
coplanarity verification in multiple views.

« A unified optimization model is constructed to concur-
rently minimize reprojection errors of point, line, and
junction of coplanar lines in the bundle adjustment, where
the confidence of coplanarity is employed to calculate
covariance matrices of 3D junctions.

The remainder of the paper is organized as follows.
Section II details related work. The system overview is pre-
sented in Section III. Section IV describes the proposed
method. The experiments are provided in Section V and
Section VI concludes the paper.

Il. RELATED WORK
Visual SLAM uses the image sequence collected by visual
sensor to estimate the pose of the camera while establishing
an environmental map. In the following, monocular visual
SLAM and the application of junctions of coplanar lines are
reviewed.

A. Monocular Visual SLAM

Davison et al. proposed a real-time monocular SLAM
(MonoSLAM) [4], which performs probabilistic modeling of
the camera pose and 3D point position based on the extended
Kalman filter. Due to the fact that it needs to estimate and
update the states of the camera and all 3D points in the map,
MonoSLAM can mainly be applied to a small scene. Unlike
MonoSLAM that uses a single thread to update the camera
pose and map framewisely, Klein and Murray simplified frame
matching by designing the keyframe mechanism to reduce
computing cost. And then parallel tracking and mapping
(PTAM) [5] is achieved. Also, the use of BA optimization
makes it achieve higher accuracy.

Since the idea of keyframe was proposed in [5], fruitful out-
comes have ensued. Engel et al. proposed a large-scale direct
monocular SLAM (LSD-SLAM) [10] that directly processes
pixel features with a large intensity gradient. With the gradient-
based pixel filtering, it constructs a large-scale consistent semi-
dense map under the brightness constancy assumption. This
assumption is overcome in direct sparse odometry (DSO)
[11] through a full photometric calibration considering expo-
sure time, lens vignetting, and non-linear response functions.
Besides, point-based SLAMs have been proposed [6], [19],
[20]. With features from accelerated segment test (FAST)
[21], Herrera et al. proposed deferred triangulation visual
SLAM (DT-SLAM) [19], which incrementally tracks indi-
vidual 2D features until sufficient baseline for triangulation.
This mechanism improves the stability of tracking even with
pure rotation. Different from DT-SLAM that uses a local
patch of pixels to describe a feature, ORB-SLAM adopts the
oriented FAST and rotated BRIEF (ORB) [22] to describe
point features [6]. It integrates automatic initialization and loop
closure detection with the PTAM framework, which performs
well in speed and map accuracy. ORB-SLAM?2 [7] is an
extended version that supports monocular, stereo, and RGB-D
cameras. In some low texture environments with few point
features, the pose estimation is sometimes unstable due to
insufficient feature matching. To handle this problem, an edge
point-based SLAM (EDGE-SLAM) [20] was proposed by
applying edge point detection and matching refinement based
on three views instead of traditional two-view feature extrac-
tion. Recently, Li er al. proposed an attention-based visual
SLAM that simulates human navigation by combining a visual
saliency model with traditional monocular visual SLAM [23].
Moreover, a new optimization method termed as weighted
bundle adjustment is presented, which efficiently reduces the
uncertainty of pose estimation.

In practice, the point map constructed by point-based SLAM
does not sufficiently express the structural properties of the
environment. Some researchers turn to visual SLAM using the
line features instead of point features. Smith et al. conducted
a line-based monocular extended Kalman filter SLAM [24].
A fast line detector is provided, where the candidate line seg-
ments generated by connecting FAST corners are hypothesized
and tested. In some line-based SLAMs, the vanishing point
is often employed to refine line features [25], [26] by con-
straining the direction of the lines. Also, loop detection [27],
place recognition [28], and the combination of corner features
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Fig. 1. Overall framework of the monocular visual PLJ-SLAM approach.

[29] are realized by using the line feature with its structural
properties. In addition, a line-based SLAM with optimization
is presented [30], where the pliicker representation and cayley
representation are used for line projection and optimization,
respectively.

Overall, line-based SLAMSs usually require structured
scenes, which possibly affect their applications. The combi-
nation of point and line features becomes a natural choice.
In [17], a geometric interpolation relying on epipolar geometry
is designed to achieve point tracking in all frames for matrix
factorization-based initialization, and localization is conducted
with 3D lines by pliicker and orthonormal representations.
This solution is robust in some challenging environments.
Another point-line-based work focuses on the initialization of
visual odometry with small motion [31], where the point and
pliicker line reprojection constraints are adopted to estimate
and optimize rotation with line segment correspondences,
which provides good initial guesses for rotation and line
directions. Pumarola et al. proposed a monocular visual SLAM
based on point and line features (PL-SLAM) [8]. Defining
the line segment by its two endpoints, PL-SLAM introduces
the line segments satisfying three-view constraints into the
optimization with the point feature to improve the accuracy
of camera pose estimation as well as the adaptability to the
low-texture environment.

B. Application of Junctions of Coplanar Lines

Most of the monocular SLAM methods based on point
and line features use the endpoints of the line to establish
matching to improve the accuracy of pose estimation. It is
noted that some important characteristics of lines such as
coplanar are also valuable, which deserves to be further
researched. In the field of computer vision including 3D
scene modeling [32], [33], feature correspondence [34], [35],
and stereo visual SLAM [36], the junction of coplanar lines
is used. In [32], adjacent lines’ angles and their junction
coordinate are integrated to form a line intersection context
feature (LICF). And then simultaneous camera geometry esti-
mation and line matching are conducted, where the LICF is

matched by normalized cross-correlation (NCC) in two-view.
Li et al. achieved line matching by designing a descriptor that
represents the local region covered by two concentric circles
centered at the junction [33]. With known epipolar geometry,
Vincent and Laganiere solved point correspondences between
widely separated views by estimating the local perspective
distortion between the neighborhoods of junctions [34]. As for
line-based stereo visual SLAM [36], junctions are described
by rotated BRIEF for line matching, and an environment map
with only line landmarks is constructed. An important usage
of the junction feature is that it acts as an auxiliary mean of
line matching [32], [33], [36]. Also, it is usually extracted
in two-view and seldomly regarded as a 3D landmark in
the environment map. In this paper, the extracted candidate
junctions of coplanar lines in two-view are further verified
incrementally in three views, and line matching serves for
junction matching. On this basis, junctions are triangulated
as landmarks for environment mapping.

[1l. SYSTEM OVERVIEW

Existing point-line-based visual SLAMs mainly use the
endpoints and direction of line segments to fuse with points,
and the coplanarity of line segment pairs is not considered.
In this paper, the junction of coplanar lines is introduced
through the distance constraint of the spatial lines in multiple
views. Thus a multi-feature monocular visual SLAM with
point, line, and junction of coplanar lines is proposed for
indoor environments, which is termed as PLJ-SLAM.

The pipeline of PLJ-SLAM is shown in Fig. 1. On the
basis of ORB-SLAM2 method [7], points, lines, and junc-
tions of coplanar lines are integrated to form a multi-feature
framework. Given a stream of images, ORB points and line
segments are extracted firstly, where the latter is obtained
using the line segment detector (LSD) [37] and described by
line binary descriptor (LBD) [38]. In addition, junctions on
the image plane are formed by expanding the line segment
along its direction. Considering that the accuracy of junction
will decrease with the increasing of the distance between the
junction and the line segment, coordinate confidence for each
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junction is designed according to this distance. Then, not only
the ORB point but also the line feature and junction matched
with the local map are all used to estimate camera pose in
the tracking stage. Also, the variation of the number of line
segments and junctions is involved in keyframe selection for
better data association. The generated keyframe will be sent
to the local mapping, which further refines the current camera
pose and updates the map. Firstly, the 3D landmarks of the
current keyframe are added to a queue for stability verification.
And then the verified 3D landmarks will be integrated into the
environment map. Moreover, new 3D landmarks are created
through feature matching and triangulation among the current
keyframe and its associated keyframes in the local map.
Afterwards, the 3D landmarks and camera poses in the local
map of the current keyframe are refined by local bundle
adjustment. In addition, the loop closure in the ORB-SLAM?2
method is directly used.

During the creation of new 3D landmarks, the 3D coor-
dinates of endpoints of each line segment are estimated
according to reprojection constraints in three views. Similarly,
for each 2D junction, 3D coordinates in its corresponding 3D
line pair are calculated and the distance between these two
coordinates is used to determine whether the 2D junction is a
coplanar junction. On this basis, triangulation is performed to
create new 3D junctions. Specially, each junction is attached
to a confidence of coplanarity for calculating its covariance
matrix of the local bundle adjustment. Besides, for each 3D
junction of the current keyframe from the tracking stage, its
confidence of coplanarity can be dynamically updated.

IV. POINT-LINE-JUNCTION BASED SLAM
In this section, ORB points [7], line segments, and junc-
tions of coplanar lines are combined to achieve a monocular
visual SLAM. Next, feature extraction and matching, feature
tracking, and local mapping are addressed, respectively.

A. Feature Extraction and Matching

For the line segment feature, LSD [37] is employed for
fast extraction. The candidate line segments will be filtered
by a given length threshold. Afterwards, LBD descriptor [38]
is calculated to express each line segment for line matching.
Let LineSet; = {l1,1»,--- ,1,} denotes the line segment set
extracted from the image I, where n refers to the number
of line segments. It is worth mentioning that the stability of
a junction is affected by the length of extension of corre-
sponding line segment. Inspired by this, adaptive coordinate
confidence is designed to evaluate the junction. Different from
existing junction selection methods with fixed distance [32],
[36], we consider generating more candidate junctions. The
confidence is illustrated in Fig. 2. Take a line segment /;
with the length of D;; as an example. Its two endpoints S;
and E; are extended to points Sx; and Ex; with the length
ADy;, respectively, where 1 is a given constant. Then, we get
the confidence interval ¥;, which is between Sx; and Ex;.
Junctions beyond this interval are considered invalid. The
coordinate confidence of a junction P; relative to line segment

Fig. 2. Schematic diagram of junction coordinate confidence. The

junction Pp relative to line segment /; has a confidence of 1 — gg”’_.
4

The coordinate confidences of the junctions P;; and Pj relative to line
segment /; are 1 and 0, respectively.

[; is calculated as follows.
Dgp

Dy
0 P ¢

P, eV

Conf (P;|l;) = (1)

where Dpp denotes the minimal distance from junction P; to
line segment /;.

Since each junction P;; is formed by two line segments /;
and /;, the coordinate confidence of the junction P;; is given
by:

2)

In the process of extracting features of junctions, the rela-
11 Cln

Confidence (P,-j) = Conf (P;|l;) * Conf (P;|l})

tionship matrix M = between candidate

¢ c
junctions and its constructe’:i1 lines isn;lnaintained for junction
matching, where c;;(i,j = 1,2,---,n) is the index of the
junction formed by /; and /;. Note that only junctions whose
coordinate confidences exceed a given threshold are valid, and
c¢ij = —1 for invalid junctions. As the junction is generated
depending on intersection of a line pair, the matching of
junctions between frames can be deduced with line matching
and the relationship matrices.

Formally, we consider two frames F and F, whose relation-
ship matrices are labeled as M’ and M*2, respectively. In the
frame F, two line segments liF I and lf' form a junction Pifl ,

correspondingly, a junction P,,f,zl attached to line segments l,,':z
and [}? in the frame F; is defined. With line matching pairs

(liFl,l,‘Zz) and (lf',l,fﬂ between F; and F>, (Pi?, P2y isa
junction matching pair when cgl >0,ch2 > 0.

B. Feature Tracking

After the features are extracted, they are associated between
frames to estimate camera pose in the feature tracking stage.
To continuously construct the association within features, the
motion of camera should be estimated, which is performed
incrementally on the local map. The 3D features in the last
frame will be firstly used to match with the current frame based
on the constant velocity model. If the feature correspondences
are not enough to support the pose estimation, features of
the last reference keyframe will be projected to the current
frame for matching. For the projected line and the matched
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Fig. 8. Results of feature tracking for an image in sequence
fr3_long_office, where the green points denote ORB features, the red
points refer to the junctions of coplanar lines, and the blue line segments
are line features.

one, their overlap rate is considered to improve the accuracy
of line matching. After the angles between the matched line
and the coordinate axes in the image plane are calculated,
the endpoints of the projected and the matched lines are
projected on the coordinate axis with the smaller angle. On this
coordinate axis, the overlap rate of line segments is calculated.
The matching is considered as qualified when the overlap rate
of line segments exceeds 85% [8]. Note that a junction is
represented by a descriptor which combines the descriptors
of its corresponding two line segments. In some sense, the
junction can be regarded as an independent feature after cre-
ation. As long as the junction descriptors match normally, the
junctions between frames can be matched even if the junction
locations are occluded. For example, a junction is located
at the extension lines of two line segments and there exists
occlusion on the junction location. Because the occlusion does
not affect the line segment descriptors, the junction descriptors
are not affected and thus the matching of junctions between
two frames is still normal.

After enough 3D-2D feature correspondences are obtained,
an initial camera pose can be estimated through pose graph
optimization. Afterwards, the local map of the current frame is
constructed based on the co-visibility graph. The initial pose is
then iteratively optimized by local bundle adjustment within
the local map and the final camera pose is obtained. Next,
it shall be judged whether the current frame is inserted into
the map as a new keyframe, where the quantity variations
of lines and junctions are also considered upon the existing
criteria in ORB-SLAM?2. Fig. 3 gives an illustration of feature
tracking for an image in sequence fr3_long_office of the
TUM RGB-D dataset, where the green points denote ORB
features, the red points refer to the junctions of coplanar lines,
and the blue line segments are line features. Some junctions
seem to be isolated because they are located at the extension
lines of line segments or their associated line segments are
missing due to line tracking failure. Only the features that are
successfully matched in the current frame are provided for
clear presentation.

C. Local Mapping

Local mapping consists of keyframe preprocessing, new 3D
line segment creation, new 3D junction creation and updating,

0, 0, 0s
0,

Fig. 4. 3D line segment creation within three views.

and local bundle adjustment with multiple features. And new
3D landmarks are indispensable to enhance the quality of
tracking, which are mainly created by triangulation among the
feature correspondences between the current keyframe and its
associated keyframes.

1) Keyframe Preprocessing: When a new keyframe arrives,
its co-visibility graph is updated, where the shared line and
junction features with other keyframes are also considered to
enhance the co-visibility. Then, the culling involving ORB,
line segment, and junction features is conducted to choose
stable 3D features, which are inserted into the map. A feature
is stable [6] when it is visible in at least 25% of the frames
during the first several keyframes after creation and at least
two keyframes can observe it.

2) New 3D Line Segment Creation: Since 2D detection may
exist the shift problem of line segment endpoints [40], it is
inaccurate to use endpoints information of 2D line segments
between two keyframes for 3D line segment creation. Due to
the fact that line correspondences between two views do not
provide any constraints on the relative motion estimation [39],
it is necessary to import a third keyframe during the creation of
new 3D line segments to limit the line-based geometry within
two views. The creation of 3D line segments in three views
is shown in Fig. 4.

Formally, 3D line segment L, is expressed by its 3D
endpoints P, Q € R3 and let I, denote its 2D detections on
image planes whose optical centers are located at Oy, where
k = 1,2,3. We label 0y = {Ry, tr} € R3* as the camera
pose, where Ry is the rotation matrix and ¢; refers to the
translation vector. The line coefficient vector I of the 2D line
segment [ is obtained as follows.

I = pr X gk 3)

where pg, gr are 2D endpoints of .

We label p; and g as the endpoints of a 2D line segment
[1 in the current keyframe. To avoid the influence from the
endpoint shift, in other two associated keyframes, we mainly
concern the lines where 2D line segments related to [ are
located regardless of their endpoints. Combined with the
constraints that the projections of 3D line segment in other two
keyframes are located on the corresponding 2D lines, we have:

xj=p(X;,01,K)
Ty (X;,0,,K)

=0 )
g (X;.03.K) =0
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where j = 1,2, and K denotes the camera calibration
matrix, and x; and xp are the coordinates of p; and g¢i,
respectively. X1 and X, indicate the 3D coordinates of P and
0. ¢(Xj, 0k, K) reflects the projection from 3D to 2D, where
k = 1,2,3. Then, the coordinates X| and X, of P and Q are
solved by SVD decomposition.

0T,

LT3
xjxT1(3) — T1i(1)
xjyT13) = T1(2)

X;=0 (5)

where T = KO, € R3** Ti(u) is the uth row of the
matrix T.

3) New 3D Junction Creation and Updating: With the 2D
matched junctions from the current keyframe and its two
associated keyframes, the 3D junction is created in three views
as follows. If the 3D line segments L, and L; corresponding
to the 2D line segments that form the 2D junction of the
current keyframe are found, we combine the projected coor-
dinates CP};b and CPﬁb of the 2D junction of the current
keyframe on L, and L, to judge whether a 3D junction
is created, as illustrated in Fig. 5(a). Coplanarity verification
is executed and the distance between C P}lb and C Pib is

calculated by distance (CP},,CP2,) = |CPL, —CPZ|,.
When distance () < dy; is satisfied, a coplanar junction
CP,yp is created by averaging CPcllb and CPﬁb, where d;j, is
a user-specified threshold. When 3D line segments L, and Ly
are not simultaneously detected, 3D junction may also exist.
In this case, they are mined by junction matching in three
views. As shown in Fig. 5(b), a candidate 3D junction C P,
is firstly calculated based on the matched 2D junction pair
between the current keyframe and another keyframe, and then
the projection error e between the projection cp,;, of CPyp
and its correspondence in the third view is calculated. Once the
square of this projection error is less than a given threshold,
C P 4p passes the coplanarity verification and it is confirmed as
a new 3D junction. The 3D coordinate of C P, is estimated
with the following constraints of 3D-2D correspondences in
three views.

Cpk - (0 (CPab, 01{5 K) s

where cp,(k = 1,2,3) describe the 2D matched junctions
in three views. On this basis, C P, is obtained with SVD
decomposition.

cp1,T1(3) =T (1)
cp1yT13) — T1(2)
cpaxT2(3) — Ta(1)
cps,yT2(3) — T2(2)
cp3,T3(3) — T3(1)
cp3yT3(3) — T3(2)

where ¢py ., cpy,, denote the coordinate values of cpy, and
Ty = K0k (S R3X4.

After obtaining coordinates of new 3D junctions, the confi-
dences of coplanarity and observations are also updated, where
the former is inherited from their 2D coordinate confidences
and observations N,ps are all set to 3, which means that

k=1,2,3 (6)

CPup=0 )

L., cp,,

2

i, CP}
¢P3

P —~ <

(b)
Fig. 5. 3D junction creation. (a) Coplanar junction creation based on
3D line correspondences. (b) Coplanar junction creation based on 2D
junction correspondences.

reprojection error is satisfied in three views. The confidence
of coplanarity is calculated as Equation (8) for local bundle
adjustment.
Confidencesp (CP4p) = Confidence (cpab) - (Nops — 2)
(®)
For each 3D junction existing in the tracking stage, repro-
jection verification among keyframes will be performed to
update its observation and confidence of coplanarity, where
Nyps grows by 1 when the verification is passed. The detailed
pipeline of 3D junction creation and updating is given in
Algorithm 1, where P20 and P3P are 2D and 3D junction
sets related to the current keyframe Fiyr; P3P denotes the

curr,s
312 Djunction in Pfu[r’, corresponding to a 2D junction pg in
P

rr*

Clél) Local Bundle Adjustment With Multiple Features: The cur-
rent camera pose and new landmarks will be further refined
using local bundle adjustment. The keyframes and features
including ORB, line segment, and junction of coplanar lines
during optimization are divided into fixed and optimizable
parts according to the closeness with the current keyframe.
Specifically, all keyframes that have connection with the cur-
rent keyframe in the co-visibility graph and features observed
by these keyframes belong to the optimizable part, whereas
keyframes that observe the aforementioned features but with-
out connection to the current keyframe are categorized into
the fixed part [6]. Next, the optimization errors of the line
segments and the junction features are introduced.

For each 2D line segment /; with line coefficient Iy =
(1!, l,%, l,?), the optimization errors related to endpoints P, O
(see Fig. 4) of 3D line segment L, can be expressed by

X p(P.0;.K) and e — 17 -(0,0;.K)

e, = 2T , = 220 (39,
Vb +@) Jay +@2y
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Algorithm 1 The Pipeline of 3D Junction Creation and
Updating
Input: the current keyframe Fgypp, its associated keyframes {® g} and
their camera poses, 2D and 3D junction sets Pc%}Z,, Pgu[r), related
to Feurr
Output: the updated P}ﬁ,
1 for ps in P2D " do

curr

2 if P30, =NULL do

3 Select Fy, Fp in {®f} by co-visibility graph of Feypr;
4 if there exist correspondences of ps in Fy and F,, do
5 if a coplanar junction needs to be created do

6 Obtain CPp;

7 Pgu[r)r <CPup(Nops =3, Confidencesp (CPyp));
8 end if

9 end if

10 else

11 perform reprojection verification;

12 if verification is passed do

13 Ngbs + +;

14 P3D. (< CPap(Nops, Confidencesp (CPgp)):

15 end if

16 end if

17 end for

18 return

The optimization of junction C P, with its 2D projection
cpap 1s conducted by minimizing the projection error, and the
EITor €, 18 given by:

€junc = CPab — @ (CPap, 0r, K) 9)

Then, a unified cost function to integrate optimization errors
of all 3D-2D correspondences is given by:

T —1
cost = Z (porheorbgorbeorb

+ Pline (e;Ql_i,ieep + (339_1 eq)

line

+pjunce;runcg;,jncejunc) (10)

where e, is the reprojection error of an ORB point;
Porb» Pline> Pjunc are the huber cost functions for ORB,
line, and junction features, respectively. Qorp, Qjine, Qjunc
refer to the covariance matrices associated with ORB
points, line endpoints, and junctions, respectively. And
Qorp = 0'02,,1,12><2, Qiine = O'I%nel2x27 and Qjype =
Confidencesp () szunc12x27 where o2

2
] : orb> Oline’ Ujunc are
given variances.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed monocular
PLJ-SLAM method on the TUM RGB-D dataset [41]. Also,
the extension of PLJ-SLAM with IMU is also tested on the
EuRoC dataset [42]. The proposed method runs in an Intel
Core i15-1135G7 CPU (4 cores @2.40GHz) with 16Gb RAM.
We adopt absolute keyframe trajectory error (ATE) with root
mean square as the evaluation metric, where ATE quantifies
the difference between the estimated trajectory and ground
truth. In the experiments, 1 is set to 1.5 and d;;, is equal
to 2.5.

A. Ablation Study

To testify the performance of our proposed PLJ-SLAM
method, its three variants PLJ-SLAM-I, PLJ-SLAM-II, and

PLJ-SLAM-III are considered according to whether ORB, line,
and junction are involved. Notice that the initialization parame-
ter of ORB feature is 2000 in ORB-SLAM?2. The comparison
results of different methods on the sequences of the TUM
RGB-D dataset are provided in Table I, where the best and the
second-best results are labeled in red and blue, respectively.
Compared to PLJ-SLAM-I with only ORB feature, PLJ-
SLAM-II and PLJ-SLAM-III with the same ORB parameter
achieve the improvement of pose estimation with the help of
line feature or coplanar junction. In several sequences such
as fr3_walk_xyz, there exists degradation of the performance.
It could be because dynamic interference or small parallax
affects the stability of three-view feature matching. To further
improve the performance of pose estimation, the combination
of ORB, line and junction features is helpful, which can
be seen from our PLJ-SLAM. Besides, from the results of
PLJ-SLAM-I, one can observe that there is performance
improvement when the value of ORB initialization parameter
increases, which means that the method with only ORB feature
needs enough ORB points for the accuracy. On the contrary,
PLJ-SLAM method does not need so many ORB points as
other line and junction features can offer benefits. The whole
performance is actually affected by multiple factors including
feature types and environment. For PLJ-SLAM, its accuracy in
7 sequences is increased when setting the ORB initialization
parameter from 2000 to 1200. When this parameter value is
further limited (e.g. 800), performance shall become unstable
due to the significant decreasing of features number. Compared
with the results of PLJ-SLAM-II and PLJ-SLAM-1200, the
introduction of the coplanar junction feature improves the
accuracy. In general, the proposed PLJ-SLAM-1200 combines
fewer ORB points with line and coplanar junction features to
attain the best performance.

B. Comparison With Existing Methods

In this section, the proposed method is compared with
existing methods including ORB-SLAM [6], PTAM [5],
LSD-SLAM [10], LF-SLAM [43], PL-SLAM [8], and RGBD
PLSLAM [13] on TUM RGB-D benchmark. The first three
methods belong to point-based SLAM, the fourth method is
line-based SLAM, and the last two methods correspond to
the SLAM with point and line features. Since the monocular
SLAM lacks scale information, the trajectories are first aligned
in 7DoF with the ground truth. The comparison results on
TUM RGB-D dataset are presented in Table II, where the
best and the second-best results are labeled in red and blue,
respectively. It can be seen from Table II that PTAM and
LSD-SLAM fail in several sequences. Overall, our PLJ-SLAM
achieves the best performance in 7 of 11 sequences, which
demonstrates the effectiveness of the proposed method with
points, lines, and junctions of coplanar lines. In the sequences
fr2_xyz, fr1_floor, and fr2_360_kidnap, our PLJ-SLAM is
possibly restricted by insufficient 3D junctions. For example,
many long lines extracted from the sequence frl_floor are
almost in the same direction, which makes it difficult to form
junctions.
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TABLE |

COMPARISON OF DIFFERENT VARIANTS OF OUR PLJ-SLAM oN TUM RGB-D DATASET IN TERMS OF ATE (cm)

fr2 360 fr3 long fr3 str

fr3_str

fr3_sit

fr3_sit

fr3_walk fr3 walk

Method ORB  Line Junction frl_xyz fr2_xyz frl_floor ~kidnap  office  tex far tex near xyz halfsph  xyz  halfsph

v (1200)  x X 122 032 X 5.28 2.91 1.16 1.51 X 1.55 X 2.18

PLJ-SLAM- N (2000)  x X 1.14 030 2.15 5.03 1.98 1.14 1.43 115 145 1.25 1.84
N (1200) X 098  0.30 1.92 4.20 1.34 0.93 1.16 098  1.53 1.27 1.77

PLI-SLAM-II N (2000) N X 094 025 1.83 3.92 1.31 0.90 1.22 101 178 1.30 2.13
v (1200)  x N 096 030 1.67 3.79 2.10 1.13 1.18 1.04 144 1.45 2.00

PLI-SLAMHIL (2000) X N 1.01 026 1.83 2.97 2.74 1.04 1.07 1.05  1.46 1.53 1.85
V(12000 N 080 027 1.81 3.36 123 0.85 1.00 101 128 1.01 1.58

PLJ-SLAM  +(2000) Y 0.80 023 1.99 3.78 1.21 1.07 1.08 0.87 143 1.41 1.73

v (800) Y 092 036 8.94 3.40 1.55 0.89 1.35 094  1.70 X X

The symbol “X” means the tracking failure. The best and second-best results are labeled in red and blue, respectively.

==+ groundtruth
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— PLISLAM

el

¥ (m)

x(m)

(@)

-08 -06 -04
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==+ groundiruth
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00 02
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(©)
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— PLISLAM

Fig. 6. Comparison of trajectories estimated by PLJ-SLAM and ORB-SLAM on four sequences of the TUM RGB-D dataset. (a) fr2_360_kidnap.

(b) fr2_xyz. (c) fr3_long_office. (d) fr3_walk_xyz.

TABLE Il
COMPARISON WITH EXISTING METHODS ON TUM RGB-D DATASET IN TERMS OF ATE (cm)
TUM RGB-D

Sequences ORB-SLAM [6] PTAM[5] LSD-SLAM[10] LF-SLAM [43] PL-SLAM[8] RGBDPLSLAMI[I13] PLJ-SLAM

frl_xyz 0.90 1.15 9.00 1.05 1.21 1.16 0.80

fr2_xyz 0.30 0.20 2.15 0.25 0.43 0.40 0.27

frl_floor 2.99 X 38.07 1.74 7.59 6.22 1.81

fr2 360 kidnap 3.81 2.63 X 2.97 3.92 3.26 3.36

fr3_long office 345 X 38.53 1.35 1.97 1.86 1.23

fr3_str tex far 0.77 0.93 7.95 0.88 0.89 0.92 0.85

fr3_str tex near 1.58 1.04 X 1.17 1.25 1.03 1.00

fr3_sit xyz 0.79 0.83 7.73 - 0.066 0.07 1.01

fr3_sit_halfsph 1.34 X 5.87 1.29 1.31 - 1.28

fr3_walk xyz 1.24 X 12.44 1.16 1.54 1.60 1.01

fr3_walk_halfsph 1.74 X X 1.66 1.60 1.58 1.58

Average 1.72 1.13* 15.22% 1.35% 1.98 1.81* 1.29

The data of existing methods were extracted from [6], [8], [13], and [43]. “*” reflects the average result of partial data and “-” means that the data is not provided

in their papers.

Fig. 6 shows the comparison of trajectories estimated by
PLJ-SLAM and ORB-SLAM on four sequences of TUM
RGB-D dataset. It is noted that the camera’s field of view was
completely blocked manually in the middle part of sequence
fr2_360_kidnap, and naturally the visual-based camera pose
estimation fails. At the final stage of this sequence, the occlu-
sion disappears and the camera pose estimation is restored by
relocation. One can see that our trajectories are closer to the
ground truth than those of ORB-SLAM.

C. Efficiency Analysis

In our method, there are three threads: tracking, local
mapping, and loop closure. The first one is used to extract

features and estimate camera pose based on feature match-
ing, and the second one performs map maintenance, which
includes keyframe preprocessing, new landmark -creation,
and local bundle adjustment. Note that the third thread is
directly borrowed from ORB-SLAM2, which is not our focus.
Table III presents the running time comparison of tracking
and local mapping threads of PLJ-SLAM-1200, PL-SLAM and
ORB-SLAM on the TUM RGB-D dataset. For the proposed
method, the running time of these two main threads averaged
on the sequences of the TUM RGB-D dataset are 87.7ms
and 559.6ms, respectively. Besides ORB points, the proposed
method still needs to extract line segments and junctions of
coplanar lines. Thus, its running time is longer than that of
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TABLE IlI
COMPARISON OF THE TRACKING AND LOCAL MAPPING THREADS OF DIFFERENT METHODS ON
TUM RGB-D DATASET IN TERMS OF RUNNING TIME (ms)

TUM RGB-D sequences PLJ-SLAM PL-SLAM ORB-SLAM
Tracking thread Local mapping thread Tracking thread  Local mapping thread ~ Tracking thread  Local mapping thread
frl xyz 90.5 652.5 91.8 861.8 50.5 211.1
fr2_xyz 74.1 367.7 113.8 982.8 51.9 235.4
fr1_floor 80.2 4433 75.1 823.6 479 177.4
fr2 360_kidnap 54.8 239.8 72.4 561.2 40.0 138.8
fr3_long_ office 97.5 692.2 111.9 1002.4 55.7 236.6
fr3_str_tex_far 98.2 865.3 112.9 1256.7 49.4 200.8
fr3_str tex near 94.1 850.8 104.8 1045.3 51.6 210.1
fr3_sit xyz 97.3 582.5 111.5 830.5 46.8 153.4
fr3_sit_halfsph 91.6 472.5 109.2 776.4 471 170.4
fr3_walk xyz 95.6 483.3 86.5 574.6 45.1 129.2
fr3_walk_halfsph 90.7 506.1 102.7 705 41.1 140.7
Average 87.7 559.6 99.3 856.4 47.9 182.2
ORB-SLAM. Compared to PL-SLAM, although the proposed TABLE IV

method additionally adds the junctions, the junction feature
in turn moderately reduces the possibility of other features
involving pose optimization, and the average running time of
our method is shorter. As the tracking thread outputs the pose
of visual odometry without waiting the optimized map from
the local mapping thread, the pose output frequency of the
system is decided by the tracking thread regardless of other
threads. In addition, the local mapping thread in our method
mainly maintains the local map near the current keyframe, and
its processing time is irrelevant to the scale of the environment.
In general, the proposed method meets the requirement of
normal tasks.

D. Robustness Verification

To further verify the proposed method, the disturbance
is imposed on images, where the blur and brightness of
images are artificially changed. Take a segment of sequence
fr3_long_office as an example (see the green box in Fig. 7),
and the results are depicted in Fig. 7. The Gaussian blurs
are introduced where kernel sizes are 9 x 9 and 11 x
11 with standard deviations of oy = oy 3 and oy =
oy = 4, respectively. Fig. 7(al) provides the trajectories of
camera pose on the XOY plane, and Figs. 7(bl) and (cl)
reflect the variations of translation and rotation components,
respectively. It is seen that the proposed method can deal
with the polluted images and the results are still close to
the ground truth. The results of brightness interference by
adding an increment to all pixels of an image can be found
in Figs. 7(a2), (b2), and (c2), where the brightness increments
are set to 50 and 100. In spite of perturbations, the outputs of
our method are feasible. Figs. 8(b)-(d) present an illustration
on an image (see Fig. 8(a)) from sequence fr3_long_office,
which proves that our method can handle external interference.

E. Extension of PLJ-SLAM With IMU

With the development of visual SLAM, some methods
have combined other sensors such as inertial measurement
unit (IMU) for more robust pose estimation. In this section,
we refer to [44] to incorporate IMU. An IMU with respect
to the body frame B is used to measure the rotation rate

COMPARISON OF DIFFERENT METHODS ON THE EUROC
DATASET IN TERMS OF ATE (m)

Methods MHO! MHO02 MHO03 MH04 MHO0S5
OKVIS 0.160  0.220 0.240  0.340  0.470
ROVIO 0.210 0250 0.250 0.490  0.520
VINS-Mono 0.084 0.105 0.074 0.122  0.147
VI-DSO 0.062 0.044 0.117 0.132  0.121
ORB-SLAM3 0.062  0.037 0.046  0.075  0.057
PLJ-VI-SLAM  0.053 0.034  0.051 0.121 0.075

The best and second-best results are labeled in red and blue, respectively.

and acceleration, which are affected by sensor biases by, b,
in addition to noises. Next, we use the IMU preintegration
scheme, where position p and velocity v are described by
the relative motion increments AR, Av, and Ap between two
consecutive keyframes as follows [44]:

Rwg (k+1) = Rwp (k) ARk x+1Exp (Jﬁkb’é)
v(k+1)=0(k)+ gwAlkk+1

+ Rwa (k) (Avk,k+1 + U3, b+ Jzub’é) an
pk+1) = plk) +ok) Atk j+1 + %gWAtlikJrl

+ Rwp (k) (Apk,k+1 +J5pb + szbg)

where gw refers to the gravity vector, and Rwp denotes
the rotation from body frame B to the inertial frame W.
Jacobians J¥ and J% denote the first-order approximation of
corresponding biases [44]. The aforementioned IMU scheme
is incorporated into our PLJ-SLAM, which is termed as
PLJ-VI-SLAM.

The comparison of PLJ-VI-SLAM with other monocular
visual-inertial methods including OKVIS [45], ROVIO [46],
VINS-Mono [47], VI-DSO [48], and ORB-SLAM3 [49] on
the EuRoC dataset is illustrated in Table IV. One can see
that ORB-SLAM3 and our PLJ-VI-SLAM perform well.
Compared with ORB-SLAM3, our multi-feature combina-
tion scheme obtains better results in the bright sequences
MHO! and MHO2 with good texture. In the bright scene
MHO3 with fast motion, our method is close to the result
of ORB-SLAM3. In addition to fast motion, the sequences
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Fig. 7. Robustness verification with varying blur and brightness on a segment of fr3_long_office. (a1), (a2) The trajectories of camera pose on the
XQY plane with different blur degrees and brightness increments. (b1), (c1) The variations of translation and rotation components, with Gaussian
blurs whose kernel sizes are 9 x 9and 11 x 11. (b2), (c2) The variations of translation and rotation components, with different brightness increments

of 50 and 100.

(0.607m, 1.344m, 1.489m,
-113.68°, -2.45°, 135.24°)

(0.604m, 1.350m, 1.489m,
-114.50°, -2.01°, 135.44°)

(0.608m, 1.350m, 1.493m,
-113.65°, -2.49°, 135.39°)

(@ (b) (©)

(0.606m, 1.355m, 1.494m,
-113.87°, -2.47°, 135.16°)

(d ©

(0.612m, 1.351m, 1.495m,
-114.07°, -2.39°, 135.07°)

Fig. 8. The results of an image from sequence fr3_long_office with blur and brightness interferences. (a) The original image with ground truth.
(b), (c) The images with Gaussian blurs whose kernel sizes are 9 x 9 and 11 x 11, respectively. (d), (e) The images with different brightness

increments of 50 and 100.

MHO04 and MHOS5 exist both bright and dark fragments, which
disturbs the matching of feature descriptors and thus decreases
the performance of our method. Moreover, the introduction of
multi-map data association technology in ORB-SLAM3 also
further improves its pose estimation accuracy. From the whole
results, the proposed method is considered as an effective
one.

VI. CONCLUSION
In this paper, we present a multi-feature monocular visual
SLAM system using points, lines, and junctions of coplanar
lines. By exploring the coplanarity of line pairs, we propose a

creation algorithm to obtain 3D junctions of coplanar lines
from matching pairs of 2D junctions. Moreover, a unified
optimization model is constructed to concurrently minimize
reprojection errors of points, lines, and junctions of coplanar
lines in the bundle adjustment. The experimental results verify
the effectiveness of our method. In the future work, we shall
combine higher-order constraints among the lines to further
improve the performance of SLAM, including the inter-frame
consistency of feature combination relation during the tracking
stage. Besides, multiple visual features shall be integrated
with more information including semantics to achieve a more
accurate SLAM.
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