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Abstract— The grasp detection is crucial to high-quality robotic
grasping. Typically, the mainstream encoder-decoder regression
solution is attractive due to its high accuracy and efficiency,
however, it is still challenging to solve the checkerboard artifacts
from the uneven overlap of convolution results in decoder, and
features from the encoder also need to be further refined. In this
paper, a novel pixel-wise grasp detection network is proposed,
which is composed of an encoder, a multi-dimensional attention
bottleneck, and a decoder based on twin deconvolution. The
proposed decoder introduces a twin branch upon the original
transposed convolution branch. Through the overlap degree
matrix provided by the twin branch, the original branch is
re-weighted and then the checkerboard artifacts of the original
branch are eliminated. Besides, to deeply explore the intrinsic
relationship of features and strengthen feature discrimination,
residual multi-head self-attention, cross-amplitude attention, and
channel attention are integrated together. As a result, adaptive
feature refinement is achieved. The effectiveness of the proposed
method is verified by experiments.

Index Terms— Grasp detection, multi-dimensional attention,
twin deconvolution.

I. INTRODUCTION

OWADAYS, robotic manipulation has become an impor-

tant domain in embodied artificial intelligence [1]. As an
interdisciplinary technology of computer graphics, reinforce-
ment learning, and robotics, the manipulation skill learning
usually produces action policy by adequate training of the
manipulator in the simulated interactive environment, such as
full-physics SAPIEN simulator [2], SOFA physical simulation
framework [3], and Gazebo simulator [4]. Please refer to the
encyclopedic survey [5] for more details. During the simulated
training executed by trial and error, the proper guidance is
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helpful for efficiency improvement. For the most typical object
grasping task among robotic manipulation, grasp detection can
serve as such a guidance by making the network more focus
on the positions with highly graspable probability.

Existing grasp detections aim to find suitable grasps of the
target object from the image or point cloud [6]. The early stud-
ies on grasp detection mainly find a proper grasp by feature
matching of query object with a library of object models [7],
[8] and its extensibility is weak as it depends on these mod-
els. With successful applications of deep learning [9], [10],
fruitful outcomes with candidate-based [11], [12], [13] and
regression-based [14], [15] types are proposed. The first type
regards grasp detection as a two-stage task, which generates
candidate grasps and then evaluates grasps with score ranking.
In contrast, regression-based grasp detection is efficient as
it predicts the grasp directly through a regression network.
It is subdivided into encoder regression [14], [16], [17] and
encoder-decoder regression [15], [18], [19], [20] according to
the network structure. The former predicts grasp through an
encoder procedure. Although it achieves real-time detection,
the prediction tends to be the average of the ground truth in
some cases, which is possibly invalid. With the advantage
of the decoder that up-samples the feature map for fine-
grained pixel-wise prediction, the encoder-decoder regression
solution attains good accuracy. Since the pioneering method
GG-CNN (generative grasp convolutional neural network) is
proposed [15], a variety of grasp detection networks are
designed: enhanced GG-CNN with semi-supervised feature
extraction [18], generative residual convolutional neural net-
work (GR-ConvNet) [19], and two-stream grasping network
(TsGNet) [20].

Notice that encoder-decoder regression networks usually
utilize cascaded deconvolution (i.e. transposed convolution)
to up-sample the feature map for realizing grasp prediction
of each pixel. However, such up-sampling process can cause
the feature map to display checkerboard-like pattern called
checkerboard artifacts [21], which appears commonly in image
generative networks [22]. This phenomenon makes the feature
map unsmooth and thus results in performance degenera-
tion. Actually, the checkerboard artifacts originate from the
uneven overlap of convolution results at different positions
[21]. If the relative overlap differences among positions are
computable, they can be used to constrain uneven overlap and
thus the checkerboard artifacts are expected to be eliminated.
Besides, to better focus on regions of interest and suppress
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redundant features, the attention mechanism has shown its
advantage [23], [24]. A multimodal local-global attention
network is proposed in affective video content analysis [23].
By extending the self-attention mechanism to multilevel fusion
for key parts selection both from multimodal local streams and
global sequences, a high performance is attained. Gao et al.
[24] designed a co-attention module to highlight the co-salient
objects while suppressing background. Generally speaking, the
attention solutions concern the correlation about different pixel
positions, channels, or multimodal information. On one hand,
the detail representation of features may not be insufficient,
which shall affect the performance of grasp detection. On the
other hand, it does not deeply explore the intrinsic relationship
of features such as the correlation among the row and column
features.

The aforementioned analyses motivate us to build advanced
encoder-decoder network. For this paper, the main contribu-
tions are as follows. A pixel-wise grasp detection network
with twin deconvolution and multi-dimensional attention is
proposed, which achieves good accuracy with real-time per-
formance. Different from [25] and [26] that deal with checker-
board artifacts by adding extra operation during the original
transposed convolution, we proposed a novel twin deconvolu-
tion up-sampling scheme, where a twin branch is introduced
in parallel with the original transposed convolution branch.
In the twin branch, the degree of overlap at each position is
computed through new deconvolution based on a kernel with
the same weights. Thus, the relative overlap differences among
positions can be represented by the overlap degree matrix,
which is used to re-weight the output of the original branch.
As a result, the overlapped convolution results are smoothed
and the checkerboard artifacts are eliminated. Besides, multi-
dimensional attention is designed to achieve adaptive feature
refinement. Particularly, cross-amplitude attention is provided
to mine the intrinsic relationship of features, where cross
attention promotes the stability of features by capturing the
correlation of features between the column and row corre-
sponding to each spatial position, and amplitude attention
improves detail representation of features by paying more
attention to the regions with strong gradient intensity. With
the combination of information from the residual multi-head
self-attention, feature discrimination is further enhanced.

II. RELATED WORK
This section discusses the grasp detection methods based
on deep learning from three aspects: candidate-based, encoder
regression, and encoder-decoder regression solutions.

A. Candidate-Based Solution

It infers grasps in the form of candidate-evaluation.
Lenz et al. [11] proposed a cascade coarse-to-fine network
based on sparse auto-encoder (SAE) to evaluate candidate
grasps generated by sliding window searching, and then opti-
mal grasp is obtained. A problem is that the searching based
on sliding window is time-consuming. To generate candidate
grasps rapidly, many excellent schemes are proposed. Mahler
et al. [12] obtained discretely antipodal candidate grasps from
depth images by uniform sampling based on surface normal.
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In [13], an object detector for fast grasp generation is achieved
by integrating region proposal network with sub-networks
for grasp orientation and bounding box prediction. Other
effective strategies include particle swarm optimizer [27],
object skeleton [28], and domain-independent unsupervised
clustering [29].

B. Encoder Regression

This solution utilizes an encoder network to regress proper
grasps. Redmon et al. [14] leveraged AlexNet as backbone
to perform single-stage regression of graspable bounding
boxes, which gets rid of standard sliding window or region
proposal techniques. By extracting and fusing features based
on VGG-16, a robust grasp detection is achieved with the
combination of classification and regression [16]. In [17], a
multi-modal grasp detection network is presented to predict
the grasp configuration, where two ResNet-50 are executed in
parallel for integrating the RGB and depth features. Although
real-time detection is achieved, the prediction is sometimes
invalid.

C. Encoder-Decoder Regression

It generates pixel-wise grasp prediction through an encoder-
decoder network. A generative grasp convolutional neural
network is proposed [15] to predict grasps at every pixel,
and this one-to-one mapping from a depth image avoids
discrete sampling of grasp candidates as well as long com-
putation time. Mahajan et al. [18] used vector quantized
variational autoencoder to enhance the generalization of
GG-CNN through semi-supervised feature extraction with
limited labelled training data. Kumra et al. introduced resid-
ual block and designed the generative residual convolutional
neural network (GR-ConvNet) [19], which can generate robust
grasps from n-channel input in real time. Yu et al. proposed
a two-stream grasping network (TsGNet) by replacing stan-
dard convolution with depthwise separable convolution [20].
Besides, a global deconvolution is designed to reduce the
number of parameters with better feature expression. After
the bounding box and the segmentation mask of the object
are obtained by a simultaneous detection and segmentation
network, the target object is separated from the background,
which is beneficial to avoid the background interference during
grasp detection. Nevertheless, it is still challenging that the
checkerboard artifacts make the feature maps in decoder
distort and thus affect the performance of grasp prediction.
In the field of image super-resolution, some researches are
conducted to process checkerboard artifacts. Kinoshita and
Kiya [25] designed a fixed convolutional layer with an order of
smoothness in their convolutional neural network to constrain
these artifacts. In [26], Sugawara et al. added the kernel
of zero-order hold to compensate the output of up-sampling
layers. Reference [21] directly replaces deconvolution using
resize-convolution at the cost of extra computational com-
plexity, which is implemented through nearest-neighbor resize
followed by convolution. Different from the aforementioned
processing, this paper designs a decoder based on twin decon-
volution, where a twin deconvolution branch is leveraged to
calculate the overlap degree matrix corresponding to the output
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output feature map F, € R72x28%28

Multi-dimensional Attention bottleneck

G=10,8,C W

Decoder

The framework of the proposed network. Given an RGB-D input image whose size is 4 x 224 x 224, feature is extracted by the encoder. The
of the encoder is further refined through a multi-dimensional attention bottleneck, where the outputs from the residual

multi-head self-attention (R-MHSA), cross-amplitude attention (CAA), and raw compensation are concatenated in channel, which is then adjusted by the

channel attention and a shuffle block for better feature representation Fj, € R216x28x28 Eoljowed by a convolution operation, the feature map with the size
of 72 x 28 x 28 is fed into the decoder, which adopts three cascaded twin deconvolutions TDconv-1, TDconv-2, and TDconv-3 for grasp prediction G.

of the original transposed convolution branch. By an element-
wise division operation between the outputs of original and
twin branches, the checkerboard artifacts are eliminated.

II1. METHOD

This section details the proposed pixel-wise grasp detec-
tion network with twin deconvolution and multi-dimensional
attention, which is termed as TDMAG-Net. Fig. 1 illustrates
the framework of the proposed network, which is mainly
divided into three modules: encoder, multi-dimensional atten-
tion bottleneck, and decoder. The encoder is dedicated to
feature extraction of the input image and the feature map F,
is outputted. Then, F, is refined in the bottleneck module
by combining attentions in spatial and channel dimensions
for better feature representation Fj. The result after the
convolution of Fj is sent to the decoder based on twin
deconvolution. Finally, the decoder output is processed by
four parallel standard convolutions and the grasp prediction
G =10,S, C, W] is obtained, where Q, S, C, W correspond
to feature maps of grasp quality, sine and cosine related to the
grasp angle, and grasp width, respectively.

A. Encoder

It includes a MK-ResX block, a shuffle block [30], and two
convolution layers (stride = 2). Inspired by the stronger feature
description of ResNeXt block [31] with a fixed kernel size, a
multi-kernel ResNeXt block (MK-ResX) is adopted, in which
four ResNeXt with kernel sizes of 3 x 3,5 x 5,7 x 7, and
9 x 9 are processed in a parallel way. Through the encoder,
the input RGB-D data is transformed into the feature map
F, € RO*hxw where ¢, h, and w refer to the channel number,
height, and width, respectively.

B. Multi-Dimensional Attention Bottleneck

This module is used for adaptive feature refinement based on
attention in both spatial and channel dimensions. It is mainly
composed of residual multi-head self-attention (R-MHSA),
cross-amplitude attention (CAA), raw compensation, a chan-
nel attention, and a shuffle block, as illustrated in Fig. I.
The former two blocks constitute spatial attention, where
CAA is used to reinforce features by cross attention and
amplitude attention, and R-MHSA is presented to enhance

feature discrimination. Take the feature map F, with high-
level semantic information as input, these two blocks are
complementary to extract more discriminative features. During
the forward propagation of features, semantic features are
enhanced, but in the meantime the detailed information is
gradually inhibited, which impairs the feature completeness.
To resolve this drawback, a raw compensation block parallel to
R-MHSA and CAA is introduced. By processing the low-level
feature map F,, more detailed information is involved, where
F, is the output of the first convolution (stride = 2) on the
original RGB-D image. After that, the channel attention [32]
is adopted to capture the relation among different channels for
better representation. Similar to encoder, another shuffle block
[30] is added after the channel attention to output the feature
map Fjp.

1) R-MHSA Block: MHSA [33] is popular as it can acquire
the correlation between each feature and other features at
different spatial positions. This makes the network more focus
on the object region by the learned correlation. Attracted by
this advantage, MHSA 1is adopted. Meanwhile, considering
that MHSA is sensitive to redundant features, a residual
encoder-decoder is additionally introduced prior to MHSA
for preprocessing the input feature map F,. This residual
architecture is composed of a standard convolution and a twin
deconvolution (please see Section III.C) whose kernel sizes
are both set to 3 x 3.

2) CAA Block: It mainly contains a cross attention sub-
module and an amplitude attention submodule, where the
former focuses on spatial relationship from the perspective
of column and row, while the latter aims at enhancing detail
representation of features. As illustrated in Fig. 2, CAA block
takes F, as its input to infer two 2D attention maps termed
as cross attention Across € R'PX% and amplitude attention
Aamp € R0 Then Agypss and Agpmp are concatenated in
channel and further fused by convolution layers with kernel
size 3 x 3. The attention map after fusion is utilized to
reweight F, through element-wise multiplication, and a refined
feature map Fy e Re*hxw s outputted.

The cross attention submodule is designed to capture the
correlation of features between column and row correspond-
ing to each spatial position. Both average-pooling and max-
pooling are imposed on F, along height and width dimensions.
Unlike regular two-dimensional pooling, our pooling makes an
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Fig. 2. Structure of cross-amplitude attention (CAA). The input feature F, is respectively processed by the cross attention and amplitude attention submodules
to generate two 2D attention maps Across and Agmp. Then these two attention maps are concatenated in channel and fused by convolution operation. The
fused attention map is utilized to reweight the original feature map F for a refined feature map Fy € RExhxw by an element-wise multiplication.

average/maximum operation among all the feature values in a
row or a column, which achieves the mapping from R *% to
R or REXIX® We label the outputs after average-pooling
and max-pooling in height dimension as Fap € RE*!*® and
Fyp € ROIX® respectively. Correspondingly, the outputs in
width dimension are denoted with Faw € RE<"*! and Fyw €
Rexhxl gy and Fy g are fused by matrix multiplication
to produce a feature map Fy; € RC xhxw — and similarly,
Fy € RO*Mxw s obtained using Faw and Fap. After that,
these two feature maps are added and compressed in channel
dimension through average-pooling, which is followed by a
convolutional layer with batch normalization and ReLU to
modulate features for the cross attention A ogs.

The amplitude attention submodule focuses on the regions
with strong gradient intensity, which tends to contain more
detailed information. Herein, the feature amplitude is intro-
duced to express the variation of gradient, which is referred
to the feature difference deviating from the average at each
spatial position. By max-pooling and average-pooling of F,,
two feature maps containing the maximum value and average
value of each position are obtained, respectively. After the
calculation of the maximum value minus average value of each
position, the feature amplitude is acquired, which is equivalent
to element-wise subtraction of corresponding feature maps.
Followed by a convolution operation, we get the amplitude
attention Agpp € RIxhxw,

It is worth mentioning that the cross attention promotes
the stability of features, while amplitude attention improves
detail representation of features, they are combined in pursuit
of better features.

C. Decoder

The decoder attains better up-sampling in consistent with
the spatial size of the input image, based on three cascaded
twin deconvolutions (TDconv). They have the same structure
with different kernel sizes of 3 x 3, 5 x 5, and 7 x 7,
and the numbers of their output channels are 48, 36, and 18,
respectively.

As mentioned above, the commonly used transposed con-
volution is thought to result in the checkerboard artifacts due

[/ Conv Ix1 ]

Tumtim i g
1imim g | [
A1 /m 1/

m=K,xK,,

Fig. 3.  Structure of a twin deconvolution. Fj, € RSn*MinXWin and
Foyr € RCoutxHout xWout genote the input feature map and output feature
map, respectively, where c¢;;,, hj,, win and Cour, Hour, Wour are the channel
number, height, and width corresponding to Fj, and Fyy;.

to uneven overlap of convolution results. This problem affects
the performance, especially for pixel-wise grasp prediction.
Considering that the overlaps at the same position are basically
distributed symmetrically on the convolution kernel, for a
given position, its each convolution has a similar influence on
the final result. By introducing a new transposed convolution
based on a kernel with the same weights, the degree of
overlap at each position is computed. The resultant overlap
degree matrix is then utilized to re-weight the feature map
of original transposed convolution through a division opera-
tion, which achieves smoothing of the overlapped convolution
results. In this way, the checkerboard artifacts are eliminated.
Fig. 3 shows the structure of a twin deconvolution.
Concretely, there are two branches in a twin deconvolution:
original branch and twin branch, where the former is a stan-
dard transposed convolution and the latter is used to calculate
the overlap degree corresponding to the original branch for
removing checkerboard artifacts. The input of twin branch is
a matrix Ones € RIMin>Win \ith all the entries 1, whose
spatial size is the same as that of the input feature map F;, of
the original branch. Moreover, the kernel of the twin branch
has the same spatial size as that of the original branch (K} x
K,) and its all entries are setto 1/m, m = K;, x K. With the
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transposed convolution in the twin branch, the overlap degree
matrix M,, € R"*HouxWour s computed corresponding to all
spatial positions of the output F, € R¢in*HourxWour from the
original branch. Then, an element-wise division operation is
performed between each channel of F; and M,,. Followed by
a pointwise convolution Convl x 1, the final output F,,; of
twin deconvolution is obtained.

After the sequential processing of three twin deconvolu-
tions, we acquire the feature map F;. The result after the
convolution of Fj; is sent to four parallel convolutions to get
grasp prediction G = [Q, S, C, W]. Then, the best grasp
is computed. The feature maps S and C are employed to
avoid the singularity of the grasp angle & [15], and each
element in S and C corresponds to sin(20) and cos(20),
respectively. By calculating arctan(S(p)/C(p))/2 for the
corresponding elements in S and C, we obtain the grasp
angle 6 at the pixel coordinate p and then a new feature
map A of grasp angle is obtained. Q is processed using a
filter with Gaussian kernel [15] to ensure stable grasp. On this
basis, the best grasp [p*, A(p*), W(p*)] is generated, where

p* = argmax Q(p) corresponds to the center coordinate of

P
the best grasp rectangle, Q(p) is the grasp quality at the pixel
coordinate p, A(p*) and W(p™*) refer to the angle and width
of the best grasp rectangle, respectively.

IV. EXPERIMENTS

The proposed TDMAG-Net is verified on the Cornell
grasping dataset [11], Jacquard grasping dataset [34], and
an actual multi-object scene. The Cornell dataset contains
885 images with 640 x 480 from 240 real world objects
and 8019 manually annotated rectangle-based grasps, where
5110 grasps are positive and others are negative. During the
network training, data augmentation [19] with random crops,
zooms, and rotations is performed to generate 4425 RGB-D
images with 3982 images as training set. The Jacquard dataset
contains 54k images of 11k objects and over 1 million grasp
labels, where 95% of the data are used as training set.

According to [35], a grasp prediction is considered proper
if the difference of orientation angle between the predicted
grasp and the ground truth is less than 30°, and the pixel-wise
intersection over union (IOU) of the predicted grasp rectangle
and its ground truth is over 25%. Then the grasp accuracy
is obtained by computing the proportion of proper grasps
in all predictions. The evaluation metrics include image-wise
accuracy (IW acc.) and object-wise accuracy (OW acc.) [15],
where the former evaluates how well the model can generalize
to new positions for objects that have been seen previously,
and the latter implies the generalization of network for the
new unseen objects. Our method runs on NVIDIA GTX1080
GPU and Intel Core i7-7770HQ CPU.

A. Ablation Studies

1) Ablation of TDMAG-Net: To testify the performance
of our proposed TDMAG-Net, its eight variants are consid-
ered according to whether BasicConv, PResNeXt, MK-ResX,
R-MHSA, CAA, raw compensation (RawCom), TransConv,
and TDconv are adopted. The BasicConv is an encoder
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Fig. 4.  Visualization of six feature maps (28 x 28) from the outputs of

R-MHSA, RawCom, and CAA.

Fig. 5. Visualization of three feature maps from the decoder. (a) TDMAG-
Net-I. (b) TDMAG-Net.

(b)

with three cascaded standard convolutions. PResNeXt is con-
structed by four parallel ResNeXt blocks with the same kernel
size 3 x 3, which is seen as a substitution of MK-ResX. Also,
TransConv is a standard decoder with three cascaded trans-
posed convolutions. Table I presents the comparison results of
different variants on the Cornell grasping dataset in terms of
IW acc. and OW acc. From the results of TDMAG-Net-I and
TDMAG-Net-III, one can see that our encoder and decoder
achieve improvement in both IW acc. and OW acc. than the
standard encoder-decoder scheme, benefiting from better fea-
ture representation of MK-ResX with the up-sampling advan-
tage of TDconv. Based on TDMAG-Net-III, TDMAG-Net
adds an attention bottleneck involving R-MHSA, CAA, and
RawCom. The detection accuracy is further improved because
of feature refinement of the bottleneck. For TDMAG-Net-II,
it adopts PResNeXt to replace MK-ResX in the encoder.
The results indicate that our MK-ResX makes a perfor-
mance improvement by fusing the information with different
scales. TDMAG-Net-1V, TDMAG-Net-V, TDMAG-Net-VI,
and TDMAG-Net-VII are designed to validate the detailed
blocks of our attention bottleneck module. The performance
is increased in sequence by respectively considering Raw-
Com, CAA, and R-MHSA blocks. Besides, the results of
TDMAG-Net-VIII with TransConv are lower than those of the
proposed TDMAG-Net, which shows that TDconv promotes
the detection performance.

Fig. 4 visualizes six feature maps with the size of 28 x
28 from the outputs of R-MHSA, RawCom, and CAA. It is
observed that these three attention blocks focus on different
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TABLE I
COMPARISON OF DIFFERENT VARIANTS OF TDMAG-NET ON THE CORNELL DATASET

Method BasicConv PResNeXt MK-ResX R-MHSA CAA RawCom TransConv TDconv IWacc. (%) OW acc. (%)
TDMAG-Net-1 N x x x x x N x 87.64 85.39
TDMAG-Net-11 x v x N N N x v 97.75 96.63
TDMAG-Net-111 x x v x x x x v 94.38 92.13

TDMAG-Net-IV x x v x x v x v 95.51 93.26

TDMAG-Net-V x x N v x x x v 96.63 95.51

TDMAG-Net-VI x x v x v x x v 95.51 95.51

TDMAG-Net-VII x x v N N x x v 97.75 96.63

TDMAG-Net-VIII x x N N N N N x 97.75 95.51

TDMAG-Net x x v \ \ \ x v 98.87 97.75
TABLE 1I TABLE I

THE ABLATION OF R-MHSA BLOCK ON THE CORNELL DATASET

THE ABLATION OF CAA BLOCK ON THE CORNELL DATASET

Relative Absolute Residual

Method position position encoder- I\Y(yao ;C' OV(Z A)a)cc.
encodings encodings decoder
MHSA-I N x x 96.63  95.51
MHSA-II x v x 95.51 9438
R-MHSA o x y 98.87  97.75

regions of interest and they work together to achieve compre-
hensive attention. To further demonstrate the twin deconvolu-
tions in the decoder of our TDMAG-Net, the outputted feature
map F; € R!8x224x224 by TDconv-3 is also visualized. And
the results of TDMAG-Net-I are provided for comparison. 3
out of 18 feature maps from TDMAG-Net-I and TDMAG-Net
are presented in Fig. 5. It is observed from Fig. 5(b) that
the checkerboard artifacts disappear, which indicates that
the introduction of twin branch eliminates the checkerboard
artifacts.

2) Ablation of R-MHSA Block: We consider MHSA-I,
MHSA-II, and our R-MHSA according to whether relative
position encodings, absolute position encodings, and residual
encoder-decoder are involved. Relative position encodings
reflect the relative relationship among pixels at different posi-
tions, while absolute position encodings assign a unique label
to each pixel. The results of different settings are shown in
Table II. It is seen that MHSA-I is better than MHSA-II,
which shows that the relative position encodings are more
suitable for the grasp detection task than absolute position
encodings. Compared to MHSA-I, R-MHSA performs better,
which proves that the residual encoder-decoder enhances the
performance through the suppression of redundant features.

3) Ablation of CAA Block: Three settings CAA-I, CAA-II,
and CAA are involved in this ablation. CAA-I only consid-
ers cross attention, and CAA-II mainly concerns amplitude
attention. Besides, CAA-II is subdivided into three cases
according to whether max-pooling and average-pooling in
the element-wise subtraction operation are involved. Table III
describes the results of different settings. For CAA-II, the
integration of max-pooling and average-pooling performs bet-
ter (96.63%) than only using one of them, which proves the
validity of the element-wise subtraction. Also, CAA-I attains
the accuracy of 96.63%. This implies that the cross attention is
comparable to the amplitude attention. With the combination
of cross attention and amplitude attention, CAA achieves the
best result.

Method Cross attention AmPlltude atiention — W acc. (%)
Max-pooling Average-pooling
CAA-I N x x 96.63
x v x 95.51
CAA-TI x x J 94.38
X V V 96.63
CAA N V N 98.87
TABLE IV

COMPARISON OF DIFFERENT METHODS ON THE CORNELL DATASET

Parameters Input Accuracy (%)
Method (Approx.) RGB Depth IW [0)%
SAE-Net [11] >1050500 N 739 756
AlexNet-based [14]  >7300000 — 880 87.1
ResNet50-based [17] >20000000 v 89.21 88.96
GR-ConvNet [19] 1900900 No97.7 966
ROI-GD [36] >30000000 — 936 935
Det_Seg w/o Seg [13] >23000000 - 982 -
GG-CNN [15] 62420 - N 73.0  69.0
TsGNet [20] 66754 S v 9313 92.99
TDMAG-Net w/RGB 376548 N — 9775 9551
TDMAG-Net 377732 v N 9887 97.75

B. Comparison With Existing Methods

In this section, the proposed TDMAG-Net is compared
with existing methods including SAE-Net [11], Det_Seg
[13], AlexNet-based [14], ResNet50-based [17], ROI-GD [36],
GR-ConvNet [19], GG-CNN [15], and TsGNet [20] on the
Cornell grasping dataset. The first two methods are cate-
gorized into the candidate-based solution, the third to fifth
methods belong to the encoder regression, and the latter three
ones correspond to pixel-wise regression. Also, TDMAG-Net
with only RGB input (TDMAG-Net w/RGB) is considered.
Their results are presented in Table IV and the accuracy
of the proposed method is good. Comparing the results of
TDMAG-Net w/RGB and TDMAG-Net, the introduction of
depth map improves the detection accuracy. In addition, the
running time including computation of the best grasp is 15 ms,
which shows the efficiency of the proposed method.

To further verify the proposed TDMAG-Net, the methods
including GR-ConvNet [19], GG-CNN [15], GG-CNN2 [37],
ROI-GD [36], Det_Seg [13] are used for comparison on
the Jacquard grasping dataset. The former two methods are
implemented with RGB-D input based on their open-source
codes [38], [39], and the result of ROI-GD is from [13].
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Original Gaussian blur  Brightness enhancement Brightness reduction GridMask Salt-pepper noise
RGB . 47
Fig. 6. The grasp detection results of TDMAG-Net with different interferences.

TABLE V
COMPARISON OF DIFFERENT METHODS ON THE JACQUARD DATASET

Parameters Input
Method (Approx.) RGB Depth W Ace. (%)

GR-ConvNet [19] 1900900 < N 89.8
GG-CNN [15] 62420 N N 87.1

GG-CNN2 [37] 66000 - v 84
ROI-GD [36]  >30000000 + — 90.4
Det Seg[13]  >23000000 - 92.95
TDMAG-Net 377732 N N 92.55

The comparison results of different methods are shown in
Table V. It is seen that our TDMAG-Net performs well with
the help of geometry information of the object from depth
map. Combining the results of Tables IV and V, the proposed
TDMAG-Net is considered as effective.

C. Robustness Verification

To further verify the proposed method, different interfer-
ences are imposed on both original RGB and depth map.
The first column of Fig. 6 presents the detection result of
original input. The second to sixth columns correspond to the
results after Gaussian blur with kernel size 10 x 10, brightness
enhancement (15%), brightness reduction (60%), GridMask
with size 3 x 3, and salt-pepper noise with intensity of 5%
are exerted. Despite these interferences, the proposed method
still achieves grasp detection.

D. Multi-Object Grasp Detection in an Actual Scene

We apply the proposed method in a realistic multi-object
scene. With the Mask R-CNN [40] for object detection and
segmentation, the target objects are separated from the back-
ground. Also, the background suppression in [20] is borrowed
to prevent the disturbance of background by filling specific
pixel value into non-target regions. Then the grasp detection
is executed based on the RGB and depth images corresponding
to each concerned object. Fig. 7(a) gives the experiment scene,
where the objects with four categories (bottle, banana, apple,
and orange) are concerned. In particular, a banana is placed

Fig. 7. The grasp detection on an actual scene. (a) RGB image. (b) Detection
results of concerned objects. (c) Grasp detection results.

into a cup and an orange is put on the book. The detection
results of concerned objects are shown in Fig. 7(b) and
Fig. 7(c) presents the corresponding grasp detection results.

E. Generality to Saliency Detection

In this section, the proposed grasp detection network is
extended to the pixel-wise saliency detection task [41], [42],
[43], [44], which also requires up-sampling operation in
the decoder with the output of saliency map. Considering
that the network needs to reconstruct the contours of the
objects instead of learning grasp pose, more feature fusion
is added to provide comprehensive features in the decoder.
Specifically, the feature maps from the input, intermediate,
and output of raw compensation are respectively concatenated
with the inputs of twin deconvolutions TDconv-3, TDconv-2,
TDconv-1. After the output of TDconv-3 is operated through
a convolution followed by a Sigmoid activation function,
saliency map of objects can be obtained. In addition, the size
of input image is adjusted to 256 x 256. The network is trained
on the MSRA10K dataset [45] with the cross-entropy loss.

Fig. 8 presents the results of different methods including
UCF [41], DS [46], ELD [47], and RFCN [48] on the typical
images from the ECSSD dataset [49], where the results of
the latter three methods are from [41]. One can see from
Fig. 8(c) that our method achieves saliency detection. UCF
[41] performs better with more details. This is because UCF
adopts an effective hybrid up-sampling based on the combi-
nation of deconvolution with restricted filter sizes and linear
interpolation, which enforces the network to learn accurate
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In the near future, the proposed method shall be combined
with instance segmentation in actual robot system for better

grasp.

Fig. 8. The results of different saliency detection methods on the typical
images from the ECSSD dataset. (a) Original images; (b) Ground truth;
(c) Our method; (d) UCF [41]; (e) DS [46]; (f) ELD [47]; (g) RFCN [48].

boundary for saliency detection. Inspired by the UCF model,
the idea of boundary recovery shall be considered in our future
work, such as introducing pyramid feature fusion or adjusting
the weighting proportion of saliency foreground and general
background in the training loss.

F. Discussion

The proposed grasp detection method based on twin decon-
volution and multi-dimensional attention provides an enhanced
up-sampling scheme with adaptable feature refinement. In the
transposed convolution, the checkerboard artifacts bring in
noise to up-sampling results. To solve this problem, a parallel
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