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Abstract—Autonomous navigation for mobile robots is a pre-
requisite to complete the tasks. In this article, we propose a novel
navigation method based on situational awareness. The scene pre-
dictor, scene interpreter and the topological map-based planner
are the main components, where the scene interpreter is used
to realize the mapping of perception information, and the scene
predictor predicts the information in the neighborhood of cur-
rent position. The basic idea of this research is the feeling of
path. Based on the definitions of path and the amount of percep-
tion, the situational awareness fitting network is designed as the
scene interpreter, and the position of the robot in a path can be
implicitly described by a situational awareness value. With the
global guidance of the planner, the robot achieves navigation. The
proposed navigation method does not rely on Cartesian-based
global position and its effectiveness is verified by simulations
and experiments.

Index Terms—Path perception, robot navigation, situational
awareness fitting network.

I. INTRODUCTION

AVIGATION is one of the fundamental function of
Na mobile robot. Autonomous and reliable navigation is
a prerequisite for mobile robots to complete the tasks with
satisfactory performances [1]. Outdoor navigation can often
be guided by satellites-based localization systems, includ-
ing GPS and Beidou. Such navigation is often ineffective
when satellite signals are weak or even there is no sig-
nal, especially for service mobile robots in indoor environ-
ments. In this case, the robot has to rely on its sensing to
realize the navigation. Pioneering researches have been con-
ducted on sensing-based navigation. Generally speaking, robot
navigation [2]—[5] involves three aspects: mapping, local-
ization and path planning. Only with effective localization
information can the robot make a proper decision.
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Mapping is actually a process of characterizing the envi-
ronment with data. Many types of maps have been presented,
including grid map [6], feature map [7], and topological map,
where the topological map abstracts the environment into the
connection between edges and points. Grid map is easy to
be created and its spatial resolution depends on the size of
the grid. Endres ez al. [9] used an RGB-D camera to generate
a 3-D point cloud map, which is converted to a 3-D occupancy
grid map to reduce storage space by the octree-based OctoMap
method [8]. Mur-Artal e al. [10] presented the ORB-SLAM
method, which adopts ORB features with rotational invariance
to generate the map. Zhang et al. [11] took the straight lines in
the environment as features to construct a map, which achieves
a better reflection of the structural information of the environ-
ment. Zuo et al. [12] built an environment map using feature
points and lines.

With an environment map, the robot can estimate its pose
by matching the environment information provided by the
robot sensors. Bosse and Zlot [13] proposed a solution to
3-D scan matching where a continuous 6DOF sensor tra-
jectory is recovered to correct the point cloud alignments,
which produces locally accurate maps and thus allows for
a reliable estimation of the vehicle motion. LOAM [14]
matches feature points extracted on sharp edges and planar
surface patches to estimate motion. In some VSLAM, such
as ORB-SLAM [10] and VINS [15], the Bag of Words can
be used to match the current frame with the keyframes for
the robot relocalization, where the features, including ORB,
Surf, and FAST are utilized. Whelan er al. [16] presented
an approach to the dense visual SLAM, which performs
time windowed surfel-based dense data fusion in combina-
tion with frame-to-model tracking and nonrigid deformation,
where the randomized ferns encoding is used [17]. For large-
scale navigation, many indistinguishable scenes possibly affect
the system performance.

In recent years, deep neural network has become a research
hotspot in the field of artificial intelligence, which possesses
excellent performance in data expression and nonlinear fit-
ting. A successful application of deep learning is to solve
the problem of robot localization where the pose regression
networks are used. Kendall et al. [18] presented the deep
convolutional neural networks for end-to-end 6-DOF cam-
era pose localization. This network is trained to regress the
camera pose from a single RGB image. Li et al. [19] proposed
an indoor relocalization system using a dual-stream convolu-
tional neural network with both color images and depth images
as the network inputs. This method performs well in chal-
lenging environments, such as motion blur. Walch et al. [20]
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proposed a CNN+LSTM architecture for camera pose regres-
sion in indoor and outdoor scenes, where they reshaped the
2048-D vector of the full connection layer in PoseNet to
a 32x64 matrix followed by four LSTM structures. A pos-
sible problem of the methods based on deep learning is that
they need global pose labels.

On the other hand, deep reinforcement learning has
been adopted for robot navigation. Savinov et al. [21]
proposed a method with the semiparametric topological
memory (SPTM), which is evaluated on the classic game
Doom [22] with the maze environment. The agent first
builds the topological graph by exploring the environment
and trains the retrieval network and the locomotion network.
Then the agent determines the goal node and the current
node by the retrieval network, while the locomotion network
outputs the action that allows the agent to move between
nodes in the graph. Gupta et al. [23] proposed the cognitive
mapper and planner (CMP) architecture to learn to map and
plan a sequence of actions toward goals. And CMP can be
trained end to end. Zhu et al. [24] presented an actor—critic
model to the task of target-driven visual navigation where the
AI2-THOR framework is designed to provide a simulation
environment with 3-D scenes and physics engine.

There is also another very promising and important direc-
tion, which is inspired by the navigation of human or animals,
where the biological mechanisms or behavioral imitation
are concerned. Chen and Mo developed an effective brain-
like biologically plausible mathematical model for robotic
navigation [25] with cerebral cortex layer, hippocampal region
layer and basal ganglia layer. Based on computational models
of the rodent hippocampus, Milford and Wyeth developed the
RatSLAM system, which constructs the experience map [26].
With the constructed global experience map, the robot can exe-
cute navigation assisted by local obstacle map [27]. In [28],
the cognitive map is built using an RGB-D-based RatSLAM
algorithm; on this basis, a grid-based direction planner and
a multilayered local navigation module are designed to achieve
navigation. Tang et al. proposed a neuroinspired cognitive
navigation model combining the cognitive map with episodic
memory [3], where the former is implemented by a 3-D con-
tinuous attractor network structure. For a human, navigation
toward a destination can be easily completed, which may be
regarded as the selection and tracking of paths. After deter-
mining the appropriate paths according to the prior knowledge
of the environment, a human marches along the scheduled
paths without the support of Cartesian-based global position.
Inspired by this line of thought, a novel navigation method is
proposed in this article. With a definition of path, the scene
interpreter implemented by the situational awareness fitting
network is introduced for path perception. And the overall
environment is represented as a series of paths and each path is
modeled as a situational awareness fitting network. As a result,
the position of the robot in a path may be mapped to a sit-
uational awareness value, and the proposed method does not
rely on the Cartesian-based global position.

The organization of this article is as follows. Section II
presents the framework of robot navigation. Section III
gives the definition of path and path perception theory. In

Section IV, the navigation based on situational awareness
is presented. The simulation and experimental results are
demonstrated in Sections V and VI, respectively. Section VII
concludes this article.

II. FRAMEWORK OF ROBOT NAVIGATION

Arriving at the destination in a familiar environment is sim-
ple for human. The process of human navigation relies on path.
Path is a concept abstracted from the perception of environ-
ment, which makes the navigation easier because it simplifies
the description of environments. From the perspective of imi-
tation, it is required to answer the questions “what is path”
and “how to describe the path quantitatively.” Human is good
at abstracting objects’ information into topological descrip-
tion. It is rational to take the concept “path” as an element
of the topological graph abstracted from the environment.
When paths can be perceived quantitatively, navigation may be
achieved even with imprecise motion control. Fig. 1 shows the
framework of the proposed situational awareness-based robot
navigation, where each position of the robot is represented
by a situational awareness value. The situational awareness
values of both current scene and destination with the topo-
logical map are regarded as inputs, and the decision is made
by a planner and a motion optimizer. The former provides
a global planning based on the topological map and the lat-
ter determines the motion of the robot using scene predictor
and scene interpreter. For the computable implementation of
the scene interpreter and predictor, the concept of path is
defined and the path perception theory is presented in the next
section.

III. PATH AND PATH PERCEPTION THEORY

Just like the road network in human society, in this article,
the robot environment is divided into many paths constrained
by mechanical structure and the obstacles, where the path
describes feasible zones that the robot can traverse. For a path,
there exist some traversable routes. A route in mathematics is
often represented as a curve connecting the starting point and
ending point, which may be expressed by multistage analytic
form or point array interpolation.

A. Definition of Path

Before the path is defined, feasible route and connected
region are first introduced.

1) Feasible Route: The feasible route A is defined as
a sequence of location points where the robot moves safely.
The first point and the end point of a route A are labeled as
APy and AP, respectively, and its length is IIAll.

2) Connected Region: For a set I of location points, if
VA,BeT',JA CT and A, B € A, the robot can move along
the route A from point A to point B, the set I" is denoted as
a connected region.

We label T'y and I'y as two connected regions and
[oNI'y = @. If a feasible routes set C satisfies VA € C with
APO € I'p and Ap, e Ty, and the location points set of all
feasible routes in C is a connected region, it means that there
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Fig. 1. Framework of situational awareness-based robot navigation.

exists a path. The location points set (Q of all feasible routes
in C is defined as a path connecting I'g and I';.

According to the path geﬁnition, for jX € Q, there exists
a set of feasible routes C that VA € C, Apy = X,AP| €
I'1. The shortest length in C is used as the evaluation of the
position X, and it is defined as situational awareness value
Quy of X in Q. Quy = min, _||A]|. Clearly, for a given path
Q, Qvy is actually only related to the robot position. In some
sense, the situational awareness value may be regarded as an
implicit expression of position of the robot.

Generally speaking, the robot perception for the environ-
ment can be encoded as a perception vector s : (s1, §2, ..., Sp),
where D is the dimension of s. For a path Q, the percep-
tion vector of a point is expressed by Us, and all perception
vectors constitute a set Cs. The mapping from perception
vectors to corresponding situational awareness values can be
expressed as g : @5 —»Qv, where @V is the set of Qv in
Q. To ensure that the mapping g : Qy Qs operational,
the situational awareness values of sample points in the path
can be labeled, and a computational model is needed to map
the perception vector to an exact value. For the former, one
can determine the approximated situational awareness value
of a point using odometer, while for the latter, the powerful
data abstraction and fitting capability of deep neural networks
paves the foundation of our computational model.

B. Path Perception Theory

For a small-scale environment, it is enough to build the com-
putational model by a single deep neural network with enough
layers and parameters. However, it does not always work espe-
cially for large-scale environments. With the increasing of
complexity of large-scale environments, this single deep neural
network becomes more complex with a heavier computation
burden. A preferable solution is to divide the environment into
many paths and each path is modeled independently. It is worth
noting that designing a common deep network with fixed num-
ber of layers and parameters is not suitable for each path due
to different complexity of paths. The more complex a path is,
the larger the capacity of corresponding deep network is. Also,
it is difficult to find a proper deep network by directly relying
on original perception vector. How to determine the capacity
of the deep network remains unsolved.

In order to solve this problem, the amount of perception
for a path is introduced, and it reflects the complexity of

interpreter

the path. A typical feature of the amount of perception of
a path is that its value is relatively fixed although the local
information perceived by the robot in the path is time-varying.
Mathematically, the amount of perception from one measure-
ment may be characterized as the difference between the
perception vector and the corresponding predicted one based
on historical information. The bigger the difference is, the
larger the amount of perception is. The total sum of all dif-
ferences in a path constitutes of the amount of perception of
a path. The larger amount of perception of a path is corre-
sponding to a more complex environment, and thus a larger
network capacity is required. The positive correlation between
the amount of perception of a path and the network capacity
provides a basis to determine the deep network.

As mentioned above, to calculate the amount of percep-
tion from one measurement, the predicted vector should be
represented quantitatively based on historical information. For
the vision sensor, laser, or ultrasonic sensor used in naviga-
tion, the perception process can be formalized as ®—P, which
is a mapping from the observation angles ® to the percep-
tion results P. First, we consider a continuous perception with
p = f1(8), where peP, 6 € ©, and 6 is continuous. Under the
world coordinate system, 6 can be mapped to a spatial position
W = f>(6). The set of all spatial positions corresponding to
the domain of 6 is labeled as the perceptible domain Q2. With
We Q, the perception process may be expressed as a func-
tion p =57 g(W, r), where {Sr} refers to the sensor coordinate
system at time ¢. All perceived results at time ¢ are expressed
as 5 g(Q;, 1), where Q; represents the perceptible domain at
time ¢. If there is a movement for the robot between time ¢;
and 1, the prediction at time 7, based on the perceptual result
at time 71 involves two types with intersection or nonintersec-
tion points, according to whether a spatial point in €2;, also
belongs to the set €2;,.

The prediction with intersection points considers those
points that belong to both € and €. It is expressed as
follows:

{Stl}g(Qtl , tl)
SlZT St

WeQ, [ We, (1)

} =0} oW, 1)

where SIZTS,1 is the transformation matrix of coordinate system
from {St;} to {St,}, and the symbol “=" represents the
prediction.
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The prediction with nonintersection points only concerns
the points in €2, without in €2, and they constitute the set
Vi, ={WIW € Q, W ¢ Q,} with the number of ||\W;,,||.

It is noted that the information provided by sensors is
actually discrete samplings of the environment. We label
S; : (sﬁ,sé, R sﬁ)) (i=1,2,...,N) as the perception vector
of ith frame in a route where N is the number of the frames.
The time ¢; is corresponding to s;. The amount of perception
from s; to s;41 is given by

F(si, siv1) = f(8i, Sit1) + M”‘fotm ” )

where f(s;, si+1) is the amount of perception for the points
that belong to both €2, and €2, || Wy, , || corresponds to the
points in €2;, without in €2;,. u (u>0) is a given constant.

All perception vectors in a route constitute the set § =
{s1,s2, ..., sny}. We define the metric space as R : (S,F), where
F is a metric defined on § according to (2). For given percep-
tion vectors Sg, Sp, S¢ € S, where a, b, ¢ € [1, N], the amount
of perception should possess the following properties.

1) Nonnegativity: F(sq, sp) > 0.

2) F(sq,84) = 0.

3) Symmetry: F(Sq, Sp) = F(Sp, Sq).

4) Triangle Inequality: F(Sa,Sc) < F(Sa, Sp) + F(Sp, S¢).-

With (2), an analytical model

F(Sa.8p) = f(Sa.80) + 11 Wi, |
8[E(sa) E(sp)] + 1] Wi, |

h(llea(t), ep(@)dt + 1|5, | 3)

1'»5(*)1,,,17

is constructed, where E(sa) and E(sb) are the estimates of
the overlapping domain ©®,, by using s, and s;, respec-
tively, and ©,, = {010 € f; ' (2,)N0 € f5 ' (Qy,)}. Besides,
we label © 7, as {010 ¢ /5 ' (Q2)N0 € £, ()} ea(r)
and ep(7) are the values corresponding to the observation
angle 2ro in E(sa) and E(sb), respectively. h(|leq(T), ep(T)|]) =
(—e_ﬂ(”e“(’)’e”(””) + 1)log,(c /&) refers to the amount of
perception produced by the difference of e,(tr) and ep(7),
llea(T), ep(t)] is the Euclidean distance between e,(t) and
ep(1). o is the range of the sensor and & is a given resolu-
tion. p is set to log,(0/%). Next, the aforementioned analytical
model is proved as a metric of the metric space N.

Proof: With the function h(|le,(t), ep(T)]]) = 0, we have
fre@) " h(lleq(t), ep(T)])dTr = 0. Obviously, F(sy,sp) > 0
and the nonnegativity is proved.

F(S0,82) = [rcq ,, Mlea(), ea(@ AT + 1| Wy, | = 0,
and thus the designed analytical model meets the second

property.
Due to the fact that a(|le,(T), ep(T)|]) = h(|lep(T), eq (D))
and ||W7,,, | = W3, 1, one can see that
F(Sq, Sp) = h(llea(t), ep(T)DdT + p| Wi,y |
T€O 14
= / h(llep(t), eq() DdT + | ¥,
T€Oy 14
= F(sp, Sa). 4

Therefore, the symmetry property is satisfied for the
proposed analytical model.

To prove that the analytical model satisfies the fourth
property, first, we conduct the following expansion:

Flsars0) = / h(llea(t), ec(t))dz

7€® tatpte
b [ he e
re®la7},lc
+ MH\IJ;albfc +MH\I};aibfc N (5)
Similarly, we obtain F(s,,sp) and F(sp,S:), which is
summed as
F(sa55) + F(Sp.50) = / hlea(). ep(D)ld

Te@tarhtc

+ / h(lleq(), ep(T)NdT

TE(")Tatbfc

+ 'u'quiatbtc +'u'H\IJEatb;c
4 / h(lles(2), ee(D) )dz
T€O 11

+ / h(llep(0). ec(®)dr

LT
+ 1 Wi | 4w Wi,
It is known that the Euclidean distances satisfy
llea(T), ec (Dl < llea(r), ep (D)l + llen(t), ec(Dl. (7

Considering that —e~(% /) i5 a monotonic increasing
function of || - ||, therefore, we have

. (6)

_ e aleamec®l o _ =g lleames@l+les@ec®l gy

With || - || > 0, one can deduce that e~ (G0/(@/&I ¢
0,11 and (1 — e @/©@/E)lea@ sy > o 0 <
e~ (20/@/ENllep@sec@Il < 1, Thus

e*%lleb(r),ec(r)H(l _ e*%\leg(r),eb(r)ﬂ)
20
< (1 _ efmuem,eb(r)u)' ©)

According to (9), one can obtain

_ o lea® eIl = Z lep(@).ec(@l

< _eapllea®er®l _ ~grlesme®ml Ly ()
Combining — e~ 20/(@/8))lea().ec(D)] <
— = @0/ /&) (lea(D).ep(@ I+ lles (). with (10), we have
_ o alea®ec@l . _ g lea(®).en(@)]
L el Ly )

Correspondingly, the following inequality is satisfied:

h(llea(T), ec(D) < h(llea(T), ex(D)I) + h(lles(T), ec(T) ).
12)
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For the integral over the common domain ©;,; of

F(s4, sc), F(sq4, sp) and F(sp, S¢), it is obtained that

/ h(llea(T), ec(T)|DdT < / h(llea(T), ep(T)DdT

TE@tat;,tc TE@tatbtc

+ f h(llep(2), ec(t) ).
fe@tatbtc

13)

For the integral over the noncommon domain, A(-) < u and
fre@t,,;bt(, h(llea(), ec(t)IDdt < ||W, 3, |l holds. Therefore

/ h(llea(t), ec(t)d < / h(llea(t), e5(0)l)dx

re@,a;b,L, re@,a,b;L.
4 f h(les(x), ec(o))dx
Te@fafhtc
+ M”\ijathic +M||\Ilta?htc *

(14)

Combining (5), (6), (13), and (14), one can see that the
proposed analytical model is suitable for the fourth property.
Thus, the analytical model is a metric of the metric space N.
With the proposed analytical model, the amount of percep-
tion of the robot in one route can be described as
N—1

I= Z F(si, Sit1).

i=1

15)

The amount / of perception provides the reference to deter-
mine the capacity of the deep network, which can be used to
map perception vectors to corresponding situational awareness
values for subsequent navigation without explicit environment
description.

C. Calculation of the Amount of Perception

The robot uses the sensor, such as a laser sensor or RGBD
camera to obtain point cloud of each frame. With dense
samplings, it is enough for environment estimation using

ceecccccccccccea,
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the methods, such as the linear interpolation. We label the
maximum detection range of the sensor as dr, and the dimen-
sion D of the perception vector is equal to the number of
point cloud data per frame. Herein, we consider the 2-D point
cloud. The world coordinate system of the environment is
denoted as {W} : OwXwYwZw, and the time corresponding to
the ith frame is denoted with #;. A sensor coordinate system
{Sti} © Osy, Xs1,Ys1,Zsy; 1s established whose origin point Og;, is
located at the position of the robot at #;, where the Xg;, and Yg;,
axes are in coincidence with the Xy and Yw axes, respectively.
For the perceptlon vector s; = (sl, s2, .. sD) the position
corresponding to s* g is labeled as Wi, where d=1,2,...,D.
we establish a polar coordinate system {Sz;} whose pole point
is Os;, with the Xg;, axis as the polar axis. The coordinates of
the W& in {S#;} and {Sz;} are described as {S"}W’ = (pd, d)
and {S’I}W’ (C d) respectively.

The points {4 W} of the ith frame are used to obtain
environment estimation E' using linear interpolation. For
two adjacent points Wi, and Wd+1, when d = D, W/, =

’ whereas WdJrl = W1 For a point P'eE!, the coor-
d1nates of P\ in {St;} and {St;} are given by (St} pi
(p',0") and ulpi — (x y%), respectively. When 0’ e
[min(@é, 0;1 +1), max(@é_, 9; +1)] accordlng to the linear inter-
polation, we have ' = (lx'— xd+1]/[xd xd+1])yd
([ —xil]/[x’gH_l xd])yd+1 With 0% of the point P, p i
calculated as follows:

ol = xiiyﬁHl - x£1+1yii
[(x = xy1) sin € — (v = yiyy1) cos 6]

(16)
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Fig. 4. Amount of perception / of different routes. (a)—(c) Different routes in a path. (d)—(f) Different routes in another path.

Next, the points’ coordinates of E' in a new coordi-
nate system {A} are then calculated, where {A} is consid-
ered as a neighboring one of {S#} and the origin point
O4 of {A} is in the neighborhood of Os;. The X4 and
Y4 axes of {A} have the same directions as Xg; axis and
Ys;, axis of {St;}, respectively. A polar coordinate system
{;\} corresponding to {A} is also established with a polar
axis direction of X4 axis. The coordinates of the point
Pl e E' in {A) and {A} are described as (P!
({A}x’ b yiy and Wpi = (A {A}G) respectively. When
Wi ¢ [mln({A}Q’ {A}H’ ),max({A}G‘,{A}G’H)], according
to the coordinate transformation between {A} and {S7;}, ie.,
(s} pi {4} pi 1186} 0, where 110, = ({Sti} st} l ) is
the position vector of the origin point of {A} in {Stl} We can
obtain

. Ayl 1A} . .
{A} i d+1 (A}, {St;} i
YT W ) ( Yat yOA)
xd'— d+1
Wt Wi (A} (st} i (St} i
it it L
+ (A} _{A} ( yd+l + yOA) - Yoa
Xd+1 Xy
(17)

_ Substituting 4y’ and ¥y of (17) with {A}pi cos g and
141 ol sint4 67, respectively, and we have
= Ay (Wi 57 yio0) =l (W +57 550) =57 v,
[0, 10, ) sin 7 — (13 —(41 3 ) costhl o]
(18)
So far, the coordinates ({A} 0 ,{‘:‘} 6%) of the points of E' in (A}
have been obtained. Actually, {A} is a neighboring coordinate
system near {S¢;}. To ensure the accuracy of environment esti-

mation, {A} is selected as {S#;11}. Equation (3) is discretized
as follows:

p'

D

F(sisiv) = Y h(lei®a), eic1 @Dy + | Wiy, | (19)
d=1

Fig. 5. Relationship between the amount of perception / and the parameter m.

where 0; € O,
and

141> v 1s the angular resolution of the sensor,

ei(0g) = St pif o

t+l Qi= 9d

eis1(0a) = p" ' gir1g,- (20)

Finally, the amount of perception of the robot in a route is
given as follows:

N—

= j{: F(si, siv1)
1
D
Z—e

1
1 d=1

—

=

20 {{8riq1) +1
GJE i+ |gt+l

i . _
pl{S’iJrl]()i:gd P =04

+1

14

x logy(0/§) + 'U'” \ijifi+| ” 2D

The calculation process of the amount of perception is given
in Algorithm 1.
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Algorithm 1 Calculation of the Amount of Perception

Input: The set of all perception vectors S = {s1,s2, - - - ,sn}-
Output: The amount of perception of the robot.

1.1 < 0

2. for i=1 to N-1 do

3. F(si,sit1) < 0

4. for d=1to D do

5 Stirlgi g, 071 «— 0,

6 for d/=1 to D do

7. if (d/< D-1) then d| < d/, dy< d/+1;

8 else dy <D, dr<1;

9 end if . _ ' ‘

10. calcu}ate ({.Sti+l }xill ,{Sif“} yij'l ) Efnd({St"'“}xiiz St} yizz);

11. if ({Sli+~l}91 c [n}in({sml}%l JStiv) 9(!12),
max({StiH}ngil ’{Stiﬂ} 96112)]) then

12. calculate 1S%+1} pi using (18);

13. break;

14. end if

15. end for

16. calculate e;(6y), ei+1(04) using (20);

17. F(si, sit1) < F(si, siv1) + h(llei(0a), eivr10D )y
18. end for

19 F(si,sig1) < F(si, sip1) + n] ¥,
20. I < I+ F(si,Si+1);

21. end for

22. return /

)

Tit1

IV. NAVIGATION BASED ON SITUATIONAL AWARENESS

As mentioned in Section III, the situational awareness val-
ues of a path can be regarded as implicit expression of
corresponding position of the robot. Thus, the robot can nav-
igate in a path according to the situational awareness values.
In reality, the environment is usually large, and it is hardly
or impossible to describe the whole environment using only
a path. Topological map provides a simplified environmen-
tal expression with less needs of accuracy and storage. In
this article, the environment is divided into some paths. And
the navigation is realized based on the motion optimizer and
topological map-based planner.

875

m Pathl

w Path2
mm Path3
Path4
w Path5
Path6
w— Path]

5 i
T |
-

Fig. 7. Motion trajectory of the robot in simulation 2.

A. Navigation in a Path

Inspired by the deep neural network, such as the multilayer
perceptron with automatic features extraction, in this article,
deep network is adopted to establish a situational awareness
fitting network whose capacity is determined according to the
amount of perception of the robot in a path. Once the situ-
ational awareness fitting network is confirmed, it can output
a situational awareness value that is related to the position of
the robot in a path. Then, the robot navigates toward the des-
tination only by the situational awareness values of its current
position and destination.

In the following, we depict the navigation of the robot in
a path based on the motion optimizer, as shown in Fig. 2,
where the scene interpreter with the situational awareness
fitting network is trained by end-to-end learning. With a per-
ception vector s : (s1, 2, ..., Sp)|x whose sampling position
is X, we can predict the perception vector § : (51,52, ...,5p)|x
in the neighborhood of X with the scene predictor using envi-
ronment estimation, where X is also a sampling position,
X — X|l2 < A, A is a given threshold. Each predicted per-
ception vector is sent to the fitting network for outputting
situational awareness value v|g. During the fitting network
training, the loss function shown in (22) is adopted

N,
1 s
loss(s) = MSE(v. ©) = - 3 |v - o3 (22)
5 =1
where N is the number of the training samples, ¥ and v are
the labeled situational awareness value and the network output,
respectively.
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Note that the outputs of the fitting network for different
perception vectors § : (51, 52, ..., 5p)|y are different. To make
the final decision for the robot, all outputs should be consid-
ered. For a path, the robot can move from one end to the
other, and vice versa. Correspondingly, there exist a forward
direction and a reverse direction where the forward direction
corresponds to the decreasing one for the situational aware-
ness values in this path. Actually, the forward direction and
the reverse direction can be exchanged, and it only depends on
personal preference. We denote the motion modes of the robot
along the forward direction and the reverse direction with My
and M,, respectively. According to different motion modes,
the robot makes corresponding decisions.

For the motion mode My, the motion situation can be
determined as follows:

ok
XX" =X argmin v|g.
[[x=X1| =2

(23)

When the robot is in M,, the motion situation is given by

ﬁk - 5
XX =X argmax v|g.
[[x=X1|,=2

(24)

As mentioned above, X is located in the A-neighborhood of
X, i.e., |[X—X||» < A. It is obvious that more X is beneficial to
determine the motion situation. However, it also brings heavier
computation burden. In this article, we choose eight points
evenly distributed in the circle of || X — X|l» = A.

B. Global Navigation

Fig. 3 illustrates an example of a topological map. The topo-
logical map of the global environment can be abstracted as
a connected graph G = (V, E), where V and E are the sets
of nodes and edges, respectively. Then, we use the planner to
determine the optimal nodes sequence.

We label Vi and V; as the nodes of starting position and
destination, respectively, which are involved in nodes plan-
ning. Take the difference of situational awareness values of
two nodes in the same path as a representation of the weight
between these two nodes, the optimal nodes sequence x* is

0.2

-0.4

0 50 100 150 200 250 300 350 400
Step

(b)

Results of simulation 2. (a) Variation curves of situational awareness values for our method and ground truth. (b) Curve of the error §.

obtained using Dijkstra algorithm

Ny—1
x* = argmin Q,
XEQq g=1

- vlv,00 (25)

Va1 (X)

where x is a feasible nodes sequence from Vj to V; whose
number of nodes is N,, and all x constitute a set Qgqy;
Qv|vq 1 and Qv|vq(x) are the situational awareness values of
the nodes V4 1(x) and V,(x) in the same path, respectively.

According to the solved x*, starting from V, one can suc-
cessively connect the neighboring nodes to form a series of
directional edges. On this basis, the global navigation of the
robot can be achieved by moving along the directional edges
in sequence with a local obstacle avoidance algorithm [29].

When the robot switches from its current edge to next
edge, there exists an overlapping zone of these two edges.
As the situational awareness fitting networks corresponding to
these two edges are different, one has to determine a switch-
ing point. We label the situational awareness value of the
overlapping zone’ center p. in current edge as v|,.. When
the situational awareness value of the robot in current edge
is within [v|p, — n,v|p, + nl, it means that the robot has
entered the overlapping zone and the switch of edges can
be executed, where 1 is a given threshold. The process of
the robot global navigation is given in Algorithm 2, where
Path(Vy(x ™), Vgy1(x ™)) refers to the path formed by the nodes
Vy(x™*) and Vo1 1(x™), and Collision_Avoidance(.) is the local
obstacle avoidance algorithm. o™ is the direction of the next
motion.

V. SIMULATIONS

Simulations are conducted to testify the proposed navigation
method. The robot navigates in the environments where a laser
sensor is equipped to obtain 2-D point cloud. For each path,
a situational awareness fitting network is trained.

A. Relationship of the Amount of Perception With the
Capacity of the Situational Awareness Fitting Network

First, we demonstrate the relationship of the amount of per-
ception / with the path. Simulation 1 describes the values of
the amount of perception in an office-like environment, as
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shown in Fig. 4. Fig. 4(a)—(c) corresponds to the values of
I with different routes in a path with the red dashed box,
whereas Fig. 4(d)—(f) depicts the values of I with different
routes in another path with the blue dashed box. One can see
that different routes in the same path have little difference in

the amount of perception, which can be considered as a path
attribute. Moreover, there exists an obvious difference in the
amount of perception for different paths with varied complex-
ity, and the amount of perception may be regarded as a metric

of the path complexity.

Authorized licensed use limited to: Institute of Software. Downloaded on November 27,2024 at 06:41:24 UTC from IEEE Xplore. Restrictions apply.



878

IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 14, NO. 3, SEPTEMBER 2022

’? sy P Pml’s s Patha | Patnl :
Z M1 F i
f B e e e ! :
D D D l:‘ T;' ! !
= O] l !
= o = ] 5 10 | :
s o n g !
o F ] = I |
= | N g ! I
N 7 1 £ ! |
L u s 4 | |
] . o n & ! :
B RENEN ] : |
| "f ] 0 ‘ 3 ‘ ‘ ‘ . 3
® pEEEEN ® 0 20 40 60Step 80 100 120 140
(@) (b)

Fig. 11.
awareness values for our method.

Results of simulation 5, where the robot is manually moved to a new position. (a) Motion trajectory of the robot. (b) Variation curves of situational
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Fig. 12. Results of simulation 6, where the several objects are changed (see the red rectangle marks). (a) Motion trajectory of the robot. (b) Variation curves

of situational awareness values for our method.

Algorithm 2 Global Navigation

Input: The graph G, the start node Vs, and the end node V.
Output: The optimal nodes sequence x*and the best direction o*.

Ny—1
l. x* < argmin ) QV‘V -Q V|Vq(X) ;
X€Q g=1 q+1 (09

2. for g=1 to Ny, — 1 do
3. Q= Path(Vg(x*). Va1 (X))

4 i Qy ¢ [@w,,c — 0., + n] then
—_—
5 if (My=1) then XX* < X argmin v|3;
=], =2
6. else .
7. XX* < X argmax v|z;
X=X =<2
8. end if _
9. a* «Collision_Avoidance(XX*);
10.  else if Quly e [prc —n.Qy, + n] then
11. if (g<Ny — 1) then
12. g<—q+1; continue;
13. else if (=N — 1) then
14. break;
15. end if
16. end if
17. end for
18. return

In the following, the structure of the situational awareness
fitting network is chosen as [1440, 6 m, 3 m, m, 1] where m is
the parameter. The traditional solution is to try many times to
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Fig. 13.
cal map.

Schematic of the experiment environment as well as the topologi-

choose a good one, which leads to a tedious process. To solve
this problem, we endeavor to explore the relationship between
the amount of perception / and the parameter m. From the
above simulation, we know that the amount of perception /
can be used to measure the complexity of path. In this article,
we select nine typical environments to determine the relation-
ship between the amount of perception / and the parameter
m, as shown in Fig. 5. It is seen that with the increasing of I,
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Fig. 14. Video snapshots of experiment 1.

the values of m are growing almost linearly. And the relationship
between / and m may be described by m = 6.6 x 10731 — 15.
Afterward, the parameter m of a situational awareness fitting
network may be approximately obtained.

B. Results of the Navigation

In this part, three simulations are conducted to verify our
proposed navigation method. Note that the environments of
these simulations are different from the aforementioned nine
environments.

Simulation 2 considers an office environment, as shown in
Fig. 6(a). Fig. 6(b) demonstrates the corresponding topological
map with 13 nodes and 16 edges, and there are seven paths
all together where the direction of the arrow refers to the
decreasing one of the situational awareness value. The robot is
required to be moved from its starting position Ps to destina-
tion Pg based on the established situational awareness fitting
networks, and the navigation trajectory is given in Fig. 7. The
variation curves of situational awareness values estimated by
our method and ground truth are illustrated in Fig. 8(a), and the
curve of their error § is depicted in Fig. 8(b), where the ground
truth may be obtained by the odometer. It is seen that the
robot moves along Pathl— Path2— Path4— Path, and finally
arrives at the destination.

The results of simulation 3 are presented in Fig. 9 with
an conference room environment. Fig. 9(a)—(d) describes the
motion trajectory of the robot, the topological map, the vari-
ation curves of situational awareness values for our method
and ground truth, and the curve of the error §, respectively.
In simulation 4, a cluttered environment is considered and the
results are depicted in Fig. 10. It is seen that the navigation
can be completed.

C. Robustness Verification

Simulation 5 is conducted where the robot is manually
moved to a new position, which is used to testify the

robustness of the proposed method that relies on the situa-
tional awareness values of each path and a topological map.
Fig. 11(a) shows the motion trajectory of the robot. When the
robot arrives at the position Pyy1, it is directly moved to a new
position Pyy>. It is seen from Fig. 11(b) that there exists a sud-
den change on situational awareness value. Still, the robot can
continue to move toward the destination.

Simulation 6 considers the case where several objects are
changed either in position or in shape, as indicated in the red
rectangle marks in Fig. 12. We can see that the robot completes
the navigation using the proposed method.

VI. EXPERIMENTS

In the following, the experiments are conducted in an office
environment. Fig. 13 demonstrates the experimental topo-
logical map with five nodes and four edges. Accordingly,
there are three paths: 1) Pathl; 2) Path2; and 3) Path3,
which are represented in red, green, and purple lines,
respectively.

In experiment 1, the starting position Pg and destination
Pr are set nearby node 5 and node 1, respectively. The video
snapshots are shown in Fig. 14. The robot moves from Pg
in Fig. 14(a). After it gets to the node 3 along Path3 [see
Fig. 14(b)—(c)], it turns left and continues to march along
Path2. Afterwards, the robot turns right and finally it arrives
at the position in Fig. 14(i). It is shown that the proposed
method enables the robot to switch between different paths to
complete the task.

Experiment 2 considers an artificial disturbance during the
robot motion and the results are depicted in Fig. 15, where
Py is located between the nodes 3 and 4, and Pg is nearby
node 1. The robot starts its motion from Ps. When it moves
to the position in Fig. 15(c) along Path2, it is forced to pause
all programs. Then it is manually dragged to the position in
Fig. 15(d) and the programs restore normal. Although this
disturbance causes a sudden change on situational awareness
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Fig. 15. Video snapshots of experiment 2.

value, from Fig. 15(e)—(i), the robot can still continue to move
and fulfill its task smoothly.

VII. CONCLUSION

In this article, a novel method based on situational aware-
ness is proposed to achieve the robot navigation, where the
situational awareness value is regarded as an implicit expres-
sion of position of the robot. With a definition of path as
well as the amount of perception, the situational awareness
fitting network is introduced as the scene interpreter, which
provides a parameterized path model. The proposed method
does not rely on the Cartesian-based global position and its
effectiveness is verified through simulations and experiments.
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